Принцип работы газовых турбин. Конструкция газовых турбин Из чего состоит газовая турбина

НК РФ 25.04.2022
НК РФ

Газовой турбиной принято называть непрерывно действующий двигатель. Далее пойдёт речь о том, как устроена газовая турбина, в чем заключается принцип работы агрегата. Особенностью такого двигателя является то, что внутри него энергия продуцируется сжатым или нагретым газом, результатом преобразования которого является механическая работа на валу.

История создания газовой турбины

Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.! Конечно же, своего существенног
о расцвета данный механизм достиг только сейчас. Активно разрабатываться турбины начали в конце XIX века одновременно с развитием и совершенствованием термодинамики, машиностроения и металлургии.

Менялись принципы механизмов, материалы, сплавы, всё совершенствовалось и вот, на сегодняшний день человечеству известна наиболее совершенная из всех ранее существующих форм газовой турбины, которая разграничивается на различные типы. Есть авиационная газовая турбина, а есть промышленная.

Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

Устроена она таким образом, что главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. , воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо в свою очередь жёстко скреплено с валом. Этот тандем имеет специальное название – ротор турбины. Вследствие этого движения, происходящего внутри двигателя газовой турбины, достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

Активные и реактивные турбины

Воздействие газовой струи на лопатки турбины может быть двояким. Поэтому турбины разделяются на классы: класс активных и реактивных турбин. Отличаются реактивная и активная газовая турбина принципом устройства.

Активная турбина

Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки, струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила. С помощью этой силы лопатки приводятся в движение. Во время всего описанного пути газа происходит потеря части его энергии. Такая энергия и направлена на движение рабочего колеса и вала.

Реактивная турбина

В реактивной турбине всё несколько иначе. Здесь поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается. Таким образом, струя газа создаёт своего рода реактивную силу.

Из описываемого выше механизма следует, что устройство газовой турбины достаточно непростое. Дабы такой агрегат работал бесперебойно и приносил своему владельцу прибыль и выгоду, следует доверить его обслуживание профессионалам. Сервисные профильные компании обеспечивают сервисное обслуживание установок, использующих газовые турбины, поставки комплектующих, всевозможных частей и деталей. DMEnergy — одна из таких компаний (), которые обеспечивают своему клиенту спокойствие и уверенность в том, что он не останется один на один с проблемами, возникающими в ходе эксплуатации газовой турбины.

§ 45. Турбинные установки

Судовые турбины служат для преобразования тепловой энергии пара или газа в механическую работу. Метод превращения энергии в турбине не зависит от рабочего тела, которое используется в турбине. Поэтому рабочие процессы, протекающие в паровых турбинах, не имеют существенного отличия от рабочих процессов, протекающих в газовых турбинах, а основные принципы проектирования паровых и газовых турбин одинаковы.

Свежий пар или газ, поступая в сопло, являющееся направляющим аппаратом, расширяется, потенциальная энергия превращается в кинетическую, и пар или газ приобретают значительную скорость. По выходе из сопла пар или газ попадает в каналы рабочих лопаток, насаженных на обод турбинного диска, сидящего на валу турбины. Рабочее тело давит на изогнутые поверхности рабочих лопаток, заставляя диск с валом вращаться. Совокупность рассматриваемых таких направляющих аппаратов (сопел) и рабочих лопаток на турбинном диске называется ступенью турбины . Турбины, имеющие лишь одну ступень, называются одноступенчатыми в отличие от многоступенчатых турбин.

Турбины по принципу работы рабочего тела (пара или газа) разделяют на две основные группы. Турбины, в которых расширение, пара или газа происходит только в неподвижных направляющих аппаратах, а на рабочих лопатках используется лишь их кинетическая энергия, называются активными . Турбины, в которых расширение пара или газа происходит также и при движении рабочего тела в каналах рабочих лопаток, называются реактивными. Турбины вращаются только в одну сторону и являются нереверсивными, т. е. они не могут изменять направление вращения. Поэтому на одном валу с главными турбинами переднего хода обычно предусматривают турбины заднего хода. Мощность судовых турбин заднего хода не превышает 40-50% мощности турбин переднего хода. Поскольку эти турбины не должны обеспечивать высокую экономичность в работе, число ступеней в них невелико.

Судовые паротурбинные установки, работающие при начальном давлении пара 40-50 атм и температуре пара 450-480° С, имеют экономический к. п. д. 24-27%.

Экономическим (эффективным) к. п. д. называется отношение тепла, превращенного в полезную работу, к теплу, развивающемуся при полном сгорании затраченного топлива. Эффективный к. п. д. характеризует экономичность двигателя. При повышении давления до 70-80 атм и температуры пара до 500- 550° С экономический к. п. д. возрастает до 29-31%. Дальнейшее повышение начального давления пара и совершенствование установок позволит увеличить к. п. д. судовой паротурбинной установки примерно до 35%.

Работа над судовыми газотурбинными установками (ГТУ) по существу носит еще экспериментальный характер, так как все еще не создано их серийной конструкции.

Газовая турбина отличается от паровой тем, что рабочим телом ее является не пар из котлов, а газы, образующиеся при сгорании топлива в специальных камерах.

Устройство и работа газовой турбины аналогичны устройству и работе паровой турбины. Они также бывают активные или реактивные, однокорпусные, многокорпусные и т. п. Отличаются газовые турбины от паровых более высокими температурными нагрузками: температура горячих газов бывает в пределах 700-800° С. Разница в температурном режиме уменьшает ресурсы времени работы газовых турбин.

В зависимости от способа сжатия воздуха и образования горячих газов различают газотурбинные установки с камерой горения и ГТУ со свободно-поршневыми генераторами газа (СПГГ). Отрицательным качеством ГТУ является большая потеря тепла при отводе отработавших газов.

Методом повышения экономичности ГТУ является использование тепла отработавших газов для подогрева воздуха, поступающего в камеру сгорания, так называемая регенерация.

Применение регенерации с одновременным двухступенчатым сжатием воздуха повышает эффективный к. п. д. установки до 28-30%. Такие ГТУ находят применение в качестве судовых силовых установок.

В судовой газотурбинной установке с камерой горения (рис.69) атмосферный воздух засасывается, сжимается компрессором низкого давления 1, располагаемым на одном валу с газовой турбиной 5, и направляется в холодильник 2, охлаждаемый забортной водой. Охлажденный воздух поступает в компрессор высокого давления 3, где снова сжимается до более высокого давления, после чего подается в регенератор 4, откуда подогретый отработавшими газами идет в камеру горения 6, где сгорает подающееся туда топливо. Продукты сгорания расширяются в газовой турбине 5 и через регенератор, отдав в нем часть тепла воздуху, выходят в атмосферу или используются в утилизационном котле.

Рис. 69. Схема газотурбинной установки с регенерацией и двухступенчатым сжатием воздуха.


Энергия, развиваемая в газовой турбине, не полностью используется по основному назначению, а частично расходуется на привод компрессоров. Для запуска газовой турбины ее необходимо раскрутить пусковыми электромоторами.

Газотурбинная установка со свободно-поршневым генератором газа (СПГГ) представляет собой активную или реактивную турбину и дизельный цилиндр, в котором происходит сжигание топлива. Комбинированная газотурбинная установка с СПГГ показана на рис. 70.

Цилиндр СПГГ 1 имеет два рабочих поршня 2 на одних штоках с поршнями компрессоров 3. При сгорании смеси воздуха с топливом, подаваемым через форсунку 11, газы в цилиндре расширяются, раздвигая поршни. В полостях 6 компрессорных цилиндров 5 создается разряжение и через клапаны 7 атмосферный воздух засасывается. Одновременно в полости 4 компрессорных цилиндров воздух сжимается и рабочие поршни возвращаются в исходное положение.

При расхождении поршней в цилиндре открываются сначала выхлопные окна 9, а затем продуваются окна 10. Отработанные газы через выхлопные окна поступают в ресивер 8 и оттуда - в газовую турбину 12.

При обратном ходе компрессорных поршней выхлопные и продувочные окна закрываются, воздух из полости 6 нагнетается в продувочный ресивер, а воздух в рабочем цилиндре сжимается. В конце сжатия температура воздуха поднимается и впрыснутое в этот момент форсункой топливо воспламеняется. Начинается новый цикл работы свободно-поршневого генератора газа.

Эффективный к. п. д. такой комбинированной газотурбинной установки с СПГГ приближается к 40%, что делает выгодной их установку на судах. Газотурбинные установки с СПГГ перспективны и будут широко использоваться на судах в качестве главных двигателей.


Рис. 70. Схема газотурбинной установки со свободно-поршневым генератором газа (СПГГ).


Судовые ядерные установки служат для получения тепловой энергии в результате деления ядер расщепляющихся элементов, которое происходит в аппаратах, называемых ядерными реакторами. Суда с такими установками имеют практически неограниченную дальность плавания.

Энергия, выделяемая реакцией деления ядер при использовании 1 кг урана, примерно равна энергии, получаемой при сжигании 1400 т мазута. Суточный расход ядерного топлива на транспортных судах исчисляется лишь десятками граммов. Срок смены тепловыделяющих элементов в судовых реакторах равен двумтрем годам. Несмотря на большой вес ядерной установки, вызванный большим весом биологической защиты, полезная грузоподъемность судов с ядерными установками, значительно больше грузоподъемности судов равных размерений, имеющих общепринятые силовые установки. Увеличение грузоподъемности на этих судах объясняется отсутствием на них обычного топлива.

Для повышения скорости движения судов применение установок, работающих на ядерной энергии, является экономически выгодным, позволяет повысить мощность силовых установок без резкого увеличения их веса. Решающим преимуществом судовых ядерных установок является отсутствие потребности в воздухе при их работе. Эта особенность позволяет решить проблему длительного движения судов под водой. Как известно, суда, плавая под водой, в однородной среде, встречают меньшее сопротивление, чем надводные суда, и, следовательно, при равных мощностях двигателей могут развивать большие скорости. Подводные транспорты большого водоизмещения могут быть значительно выгоднее в эксплуатации, чем надводные суда того же водоизмещения.

В качестве ядерного топлива для современных судовых реакторов применяется искусственно обогащенный уран с содержанием изотопа U 235 в количестве 3-5%.

Та часть реактора, в которой совершается цепная реакция, называется активной зоной. В эту зону вводят особое вещество - замедлитель нейтронов, замедляющее движение нейтронов до скорости теплового движения. В качестве замедлителя применяется простая вода (Н 2 0), тяжелая вода (D 2 0), бериллий или графит.

По типу активной зоны реакторы делят на гомогенные и гетерогенные. В гомогенных реакторах ядерное топливо и замедлитель представляют собой однородную смесь. В гетерогенных реакторах ядерное топливо располагается в замедлителе в виде стержней или пластин, называемых тепловыделяющими элементами. В судовых ядерных силовых установках применяется единственный тип - гетерогенные реакторы.

При совершении ядерной реакции около 80% энергии превращается в тепло, а 20% выделяется в виде излучений (а, в и у), а- и в-излучения особенной опасности не представляют. Но вот у-излучения и нейтронные излучения, обладающие большой проникающей способностью, вызывают вторичное излучение во многих материалах. При этом излучении в организме человека возникают тяжелые заболевания. Для предотвращения такого излучения ядерные силовые установки должны иметь надежную защиту, называемую биологической. Биологическую защиту обычно выполняют из металла, воды и бетона, она имеет значительные габариты и вес.

Наиболее мощной и технически совершенной судовой ядерной силовой установкой на гражданских судах является силовая установка на ледоколе «Ленин» - самом мощном ледоколе в мире.

Мощность четырех его турбин равна 44 000 л. с.

Главная энергетическая установка ледокола «Ленин» выполнена по следующей схеме (рис. 71). На ледоколе установлены три реактора 1 со стабилизаторами давления 2 в первом контуре. Замедлителем и теплоносителем служит обычная вода под давлением около 200 атм. Вода реактора подается в парогенераторы 3 при температуре около 325° С циркуляционными электронасосами 4. В парогенераторах получается пар второго контура под давлением 29 атм и с температурой 310° С, который приводит в действие четыре паровых турбогенератора 5. Отработавший пар проходит через конденсаторы 6 в виде конденсата и используется снова, совершая работу по замкнутому циклу.

Реакторы, парогенераторы и насосы активной зоны окружены биологической защитой из слоя воды и стальных плит толщиной 300-420 мм.



Судовые турбореактивные двигатели применяются на судах на подводных крыльях или на судах специального назначения. Часто встречающаяся схема турбореактивного двигателя приведена на рис. 72.


Рис. 71. Схема энергетической установки ледокола «Ленин»


При движении двигателя влево (по стрелке А) воздух поступает в его корпус и сжимается турбокомпрессором 1. Сжатый воздух подается в камеру горения 2, в которой сгорает поступающее одновременно топливо. Из камеры 2 продукты сгорания направляются в газовую турбину 3. В турбине газы частично расширяются, совершая этим работу для привода турбокомпрессора. Дальнейшее расширение газа происходит в сопле 4, откуда он с большой скоростью вырывается в атмосферу. Реакция вытекающей струи обеспечивает движение судна.

Парогазовая турбинная установка, работающая по циклу Вальтера, была применена на немецких подводных лодках во второй мировой войне с целью увеличения их скорости в подводном положении. Лодка с такой установкой могла в течение 5-6 ч развивать большие скорости подводного хода, доходящие до 22-25 узл.

Окислителем в этом цикле служила перекись водорода высокой (80%) концентраций, которая в присутствии катализатора разлагается в специальной камере на водяной пар и кислород, выделяя значительное количество тепла. В камере горения в кислороде сжигалось жидкое топливо с одновременным впрыскиванием туда же пресной воды. Энергия получающейся парогазовой смеси с высоким давлением и высокой температурой использовалась в парогазовой турбине. Отработавшая парогазовая смесь охлаждалась в конденсаторе, где водяной пар превращался в воду и поступал опять в систему, питательной воды, а углекислота откачивалась за борт.

Основными недостатками этих установок являлась малая дальность плавания лодок максимальными ходами, повышенная пожароопасность из-за наличия на лодке большого количества перекиси водорода, зависимость их нормальной работы от глубины погружения и высокая стоимость как самой установки, так и ее эксплуатации.

В Англии в послевоенные годы была построена подводная лодка «Эксилорер» с силовой установкой такого типа. На проведенных испытаниях было определено, что стоимость ее одного ходового часа эквивалентна стоимости 12,5 кг золота.

Вперед
Оглавление
Назад

«Турбонаддув», «турбореактивные», «турбовинтовые», - эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК - Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков - "Росатом", "Газпром" и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар - это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, - в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин - сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого - газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, - от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

Разработка новых типов ГТУ, растущие темпы спроса на газ по сравнению с другими видами топлива, масштабные планы промышленных потребителей по созданию собственных мощностей обуславливают растущий интерес к газотурбинному строительству.

Р ынок малой генерации имеет большие перспективы развития. Эксперты прогнозируют увеличение спроса на распределенную энергетику с 8% (на текущий момент) до 20% (к 2020 году). Подобная тенденция объясняется сравнительно низким тарифом на электроэнергию (в 2-3 раза ниже, чем тариф на э/энергию от централизованной сети). Кроме этого, по словам Максима Загорнова, члена генерального совета «Деловой России», президента Ассоциации малой энергетики Урала, директора группы компаний «МКС», малая генерация надежнее сетевой: в случае аварии на внешней сети снабжение электроэнергией не прекращается. Дополнительное преимущество децентрализованной энергетики - скорость ввода в эксплуатацию: 8-10 месяцев в отличие от 2-3 лет создания и присоединения сетевых линий.

Сопредседатель комитета «Деловой России» по энергетике Денис Черепанов утверждает, что за собственной генерацией будущее. По словам первого заместителя председателя комитета Государственной Думы по энергетике Сергея Есякова, в случае распределенной энергетики в цепочке «энергия - потребитель» решающим звеном является именно потребитель, а не энергетика. При собственной генерации электроэнергии потребитель заявляет необходимые мощности, комплектации и даже вид топлива, экономя, при этом, на цене киловатта полученной энергии. Кроме прочего, эксперты считают, что можно получить дополнительную экономию, если реализовать работу энергоустановки в режиме когенерации: утилизированная тепловая энергия пойдет на отопление. Тогда срок окупаемости генерирующей энергоустановки значительно снизится.

Наиболее активно развивающимся направлением распределенной энергетики является строительство газотурбинных электростанций малой мощности. Газотурбинные электростанции предназначены для эксплуатации в любых климатических условиях в качестве основного или резервного источника электроэнергии и тепла для объектов производственного и бытового назначения. Использование таких электростанций в отдаленных районах позволяет получить значительную экономию средств за счет исключения издержек на строительство и эксплуатацию протяженных линий электропередач, а в центральных районах - повысить надежность электрического и теплового снабжения как отдельных предприятий и организаций, так и территорий в целом. Рассмотрим некоторые газовые турбины и газотурбинные установки, которые предлагают для строительства газотурбинных электростанций на рынке России известные производители.

General Electric

Решения GE на основе аэропроизводных турбин отличаются высокой надежностью и подходят для применения в целом ряде отраслей: от нефтегазой промышленности до ЖКХ. В частности, в малой генерации активно используются газотурбинные установки GE семейства LM2500 мощностью от 21 до 33 МВт и КПД до 39%. LM2500 применяют в качестве механического привода и привода электрогенератора, они работают на электростанциях в простом, комбинированном цикле, режиме когенерации, морских платформах и трубопроводах.

За последние 40 лет турбины GE данной серии являются наиболее продаваемыми в своем классе. Всего в мире установлено более 2000 турбин данной модели с общей наработкой более 75 миллионов часов.

Основные характеристики турбин LM2500: легковесная и компактная конструкция для быстрого монтажа и простоты обслуживания; выход на полную мощность с момента запуска за 10 минут; высокие показатели КПД (в простом цикле), надежности и доступности в своем классе; возможность использования двухтопливных камер сгорания для дистиллята и природного газа; возможность использования в качестве топлива керосина, пропана, коксового газа, этанола и СПГ; низкий уровень выбросов NOx с использованием камер сгорания DLE или SAC; коэффициент надежности - более 99%; коэффициент готовности - более 98%; выбросы NOx - 15 ppm (модификация DLE).

Для обеспечения клиентов надежной поддержкой на всем протяжении жизненного цикла генерирующего оборудования GE открыла специализированный Центр энергетических технологий в Калуге. Он предлагает заказчикам современные решения для обслуживания, инспекции и ремонта газовых турбин. На предприятии внедрена система менеджмента качества в соответствии со стандартом ISO 9001.

Kawasaki Heavy Industries

Японская компания Kawasaki Heavy Industries, Ltd. (KHI) - многопрофильная машиностроительная компания. Важное место в ее производственной программе занимают газовые турбины.

В 1943 году Kawasaki создала первый в Японии газотурбинный двигатель и в настоящее время является одним из признанных мировых лидеров в производстве ГТУ малой и средней мощности, накопив референции по более, чем 11 000 установок.

Имея в приоритете экологичность и эффективность, компания достигла больших успехов в развитии газотурбинных технологий и активно ведет перспективные разработки, в том числе, в области новых источников энергии в качестве альтернативы ископаемому топливу.

Имея в активе хорошие наработки в криогенных технологиях, технологиях производства, хранения и транспортировки сжиженных газов, Kawasaki ведет активные исследования и ОКР в области применения водорода как топлива.

В частности, уже сейчас компания имеет опытные образцы турбин, использующих водород как добавку к метановому топливу. В перспективе ожидаются турбины, для которых, намного более калорийный и абсолютно экологически безопасный, водород заменит углеводороды.

ГТУ Kawasaki серий GPB спроектированы для работы в базовой нагрузке, включая как параллельные, так и изолированные схемы взаимодействия с сетью, при этом основу мощностного ряда составляют машины от 1,7 до 30 МВт.

В модельном ряду есть турбины, использующие для подавления вредных выбросов инжекцию пара, и применяющие доработанную инженерами компанию технологию DLE.

Электрический КПД, в зависимости от цикла генерации и мощности, соответственно, от 26,9% у GPB17 и GPB17D (турбины M1A-17 и M1A-17D) до 40,1% у GPB300D (турбина L30A). Электрическая мощность - от 1700 до 30 120 кВт; тепловая мощность - от 13 400 до 8970 кДж/кВтч; температура выхлопных газов - от 521 до 470°С; расход выхлопных газов - от 29,1 до 319,4 тыс. м3/ч; NOx (при 15% О2) - 9/15 ppm для газовых турбин M1А-17D, М7А-03D, 25 ppm - для турбины M7A-02D и 15 ppm для турбин L20A и L30A.

По эффективности ГТУ Kawasaki, каждая в своем классе, являются либо мировым лидером, либо одним из лидеров. Общая тепловая эффективность энергоблоков в когенерационных конфигурациях достигает 86-87%. Ряд ГТУ компания выпускает в двухтопливном (природный газ и жидкое топливо) исполнении с автоматическим переключением. У российских потребителей в настоящий момент наиболее востребованы три модели ГТУ - GPB17D, GPB80D и GPB180D.

Газовые турбины Kawasaki отличают: высокая надежность и большой ресурс; компактный дизайн, что особенно привлекательно при замене оборудования существующих генерирующих мощностей; удобство обслуживания за счет разрезной конструкции корпуса, съемных горелок, оптимально расположенных инспекционных отверстий и др., что упрощает осмотр и техобслуживание, в том числе силами персонала пользователя;

Экологичность и экономичность. Камеры сгорания турбин Kawasaki спроектированы с применением самых передовых методов, что позволило оптимизировать процесс горения и достичь лучших показателей эффективности турбины, а также уменьшить содержание NOx и других вредных веществ в выхлопе. Экологические показатели улучшены также за счет применения доработанной технологии сухого подавления выбросов (DLE);

Возможность использования широкого спектра топлив. Могут применяться природный газ, керосин, дизельное топливо, легкие мазуты типа «А», а также попутный нефтяной газ;

Надежное послепродажное обслуживание. Высокий уровень обслуживания, включая бесплатную систему онлайн-мониторинга (TechnoNet) с предоставлением отчетов и прогнозов, техническую поддержку силами высококвалифицированного персонала, а также замену по трейд-ин газотурбинного двигателя в ходе капитального ремонта (простой ГТУ сокращается до 2-3 недель) и т.д.

В сентябре 2011 г. Kawasaki представила новейшую систему камеры сгорания, позволившую опустить уровень выбросов NOx до менее чем 10 ppm для газотурбинного двигателя M7A-03, что даже ниже, чем требуют нынешние нормативы. Один из подходов компании к проектированию состоит в том, чтобы создавать новую технику, отвечающую не только современным, но и будущим, более жестким, требованиям к экологическим показателям.

В высокоэффективной ГТУ GPB50D класса 5 МВт с турбиной Kawasaki M5A-01D применены новейшие апробированные технологии. Высокая эффективность установки делает ее оптимальной для электро- и когенерации. Также компактный дизайн GPB50D особенно выгоден при модернизации существующих предприятий. Номинальный электрический КПД 31,9% - лучший в мире среди установок класса 5 МВт.

Турбина M1A-17D за счет применения камеры сгорания оригинальной конструкции с сухим подавлением выбросов (DLE) имеет отличные для своего класса показатели экологичности (NOx < 15 ppm) и эффективности.

Сверхнизкий показатель массы турбины (1470 кг), минимальный в классе, обусловлен широким применением композитных материалов и керамики, из которых изготовлены, например, лопатки рабочего колеса. Керамика более устойчива к работе при повышенных температурах, менее склонна к загрязнению, чем металлы. ГТУ имеет электрический КПД близкий к 27%.

В России к настоящему времени Kawasaki Heavy Industries, Ltd. в сотрудничестве с российскими компаниями реализовала ряд успешных проектов:

Мини-ТЭС «Центральная» во Владивостоке

По заказу АО «Дальневосточной энергетической управляющей компании» (АО «ДВЭУК») для ТЭС «Центральная» поставлено 5 ГТУ GPB70D (M7A-02D). Станция обеспечивает электроэнергией и теплом потребителей центральной части застройки острова Русский и кампус Дальневосточного федерального университета. ТЭС «Центральная» - первый энергообъект в России с турбинами Kawasaki.

Мини-ТЭС «Океанариум» во Владивостоке

Этот проект также осуществлен ОАО «ДВЭУК» для энергоснабжения расположенного на острове научно-образовательного комплекса «Приморский океанариум». Поставлено две ГТУ GPB70D.

ГТУ производства Kawasaki в ПАО «Газпром»

Российский партнер Kawasaki, ООО «МПП Энерготехника», на основе газовой турбины M1A-17D выпускает контейнерную электростанцию «Корвет 1,7К» для установки на открытых площадках с диапазоном температур окружающего воздуха от -60 до + 40 °С.

В рамках договора о сотрудничестве разработаны и на производственных мощностях «МПП «Энерготехника» собраны пять ЭГТЭС КОРВЕТ-1,7К. Зоны ответственности компаний в данном проекте распределялись следующим образом: Kawasaki поставляет газотурбинный двигатель M1A-17D и системы управления турбиной, Siemens AG - высоковольтный генератор. ООО «МПП «Энерготехника» производит блок-контейнер, выхлопное и воздухозаборное устройство, систему управления энергоблоком (в том числе систему возбуждения ШУВГм), электротехническое оборудование - основное и вспомогательное, комплектует все системы, осуществляет сборку и поставку комплектной электростанции, а также - реализацию АСУ ТП.

ЭГТЭС Корвет-1,7К прошла межведомственные испытания и рекомендована для применения на объектах ПАО «Газпром». Газотурбинный энергоблок разработан ООО «МПП «Энерготехника» по техническому заданию ПАО «Газпром» в рамках Программы научно-технического сотрудничества ПАО «Газпром» и Агентства природных ресурсов и энергетики Японии.

Турбина для ПГУ 10 МВт в НИУ МЭИ

Kawasaki Heavy Industries Ltd., изготовила и поставила комплектную газотурбинную установку GPB80D номинальной мощностью 7,8 MВт для Национального Исследовательского Университета «МЭИ», расположенного в Москве. ТЭЦ МЭИ является учебно-практической и, вырабатывая электричество и тепло в промышленных масштабах, обеспечивает ими сам Московский энергетический институт и поставляет их в коммунальные сети г. Москвы.

Расширение географии проектов

Компания Kawasaki, обращая внимание на преимущества развития местной энергетики в направлении распределенной генерации, предложила начать реализацию проектов с применением газотурбинных установок минимальной мощности.

Mitsubishi Hitachi Power Systems

Модельный ряд турбин Н-25 представлен в диапазоне мощности 28-41 МВт. Полный комплекс работ по производству турбины, включая НИОКР и центр удаленного мониторинга, осуществляется на заводе в г. Хитачи, Япония, компанией MHPS (Mitsubishi Hitachi Power Systems Ltd.). Ее образование приходится на февраль 2014 г. благодаря слиянию генерирующих секторов признанных лидеров машиностроения Mitsubishi Heavy Industries Ltd. и Hitachi Ltd.

Модели H-25 нашли широкое применение по всему миру для работы как в простом цикле благодаря высокому КПД (34-37%), так и в комбинированном цикле в конфигурации 1×1 и 2×1 с КПД 51-53%. Имея высокие температурные показатели выхлопных газов, ГТУ также успешно зарекомендовала себя для работы в режиме когенерации с суммарным КПД станции более 80%.

Многолетние компетенции в производстве газовых турбин широкого диапазона мощностей и продуманный дизайн одновальной индустриальной турбины отличают Н-25 высокой надежностью с коэффициентом готовности оборудования более 99%. Суммарное время наработки модели превысило 6,3 млн ч за второе полугодие 2016 г. Современная ГТУ выполнена с горизонтальным осевым разъемом, что обеспечивает удобство ее обслуживания, а также возможность замены частей горячего тракта по месту эксплуатации.

Противоточная трубчато-кольцевая камера сгорания обеспечивает стабильное горение на различных видах топлива, таких как природный газ, дизельное топливо, сжиженный нефтяной газ, уходящие топочные газы, коксовый газ и пр. Камера может быть выполнена в варианте с диффузионным режимом горения, а также сухой низкоэмиссионной предварительного смешивания газовоздушной смеси (DLN). Газотурбинный двигатель H-25 представляет собой 17-ступенчатый осевой компрессор, соединенный с трехступенчатой активной турбиной.

Примером надежной эксплуатации ГТУ Н-25 на объектах малой генерации в России является работа в составе когенерационного блока для собственных нужд завода АО «Аммоний» в г. Менделеевске, Республика Татарстан. Когенерационный блок обеспечивает производственную площадку электроэнергией 24 МВт и паром 50 т/ч (390°С / 43 кг/см3). В ноябре 2017 г. на площадке была успешно проведена первая инспекция системы сгорания турбины, подтвердившая надежную работу узлов и агрегатов машины в условиях высоких температур.

В нефтегазовом секторе ГТУ Н-25 были применены для работы площадки объединенного берегового технологического комплекса (ОБТК) Сахалин II компании «Сахалин Энерджи Инвестмент Компани, Лтд.» ОБТК расположен в 600 км к северу от Южно-Сахалинска в районе выхода на берег морского газопровода и является одним из наиболее важных объектов компании, отвечающим за подготовку газа и конденсата для последующей передачи по трубопроводу на терминал отгрузки нефти и завод по производству СПГ. В состав технологического комплекса входят четыре газовые турбины Н-25, находящиеся в промышленной эксплуатации с 2008 г. Когенерационный блок на базе ГТУ Н-25 максимально интегрирован в комплексную энергосистему ОБТК, в частности, тепло выхлопных газов турбины используется для подогрева сырой нефти для нужд нефтепереработки.

Промышленные генераторные газотурбинные установки «Сименс» (далее ГТУ) помогут справиться с трудностями динамично развивающегося рынка распределенной генерации. ГТУ единичной номинальной мощностью от 4 до 66 МВт полностью отвечают высоким требованиям в области промышленной комбинированной выработки энергии, в плане эффективности станции (до 90%), надежности эксплуатации, гибкости обслуживания и экологической безопасности, обеспечивая низкие затраты при полном сроке эксплуатации и высокую отдачу от инвестиций. Опыт компании «Сименс» в области строительства промышленных ГТУ и строительства ТЭС на их базе, насчитывает более чем 100 лет.

ГТУ «Сименс» мощностью от 4 до 66 МВт используются небольшими энергокомпаниями, независимыми производителями электроэнергии (например, промышленными предприятиями), а также в нефтегазовой отрасли. Применение технологий распределенной генерации электроэнергии с комбинированной выработкой тепловой энергии, позволяет отказаться от инвестирования в многокилометровые линии электропередач, минимизировав расстояние между источником энергии и объектом, ее потребляющим, достичь серьезной экономии средств, покрыв отопление промышленных предприятий и объектов инфраструктуры за счет утилизации тепла. Стандартная Мини-ТЭС на базе ГТУ «Сименс» может быть построена в любом месте, где есть доступ к источнику топлива, или оперативного его подвода.

SGT-300 - промышленная ГТУ с номинальной электрической мощностью 7,9 МВт (см. табл. 1), сочетает простую надежную конструкцию и новейшие технологии.

Таблица 1. Характеристики SGT-300 для механического привода и производства энергии

Производство энергии

Мехпривод

7,9 МВт

8 МВт

9 МВт

Мощность в ИСО

Природный газ/жидкое топливо/двух топливная и другие топлива по запросу;

Автоматическая смена топлива с главного на резервное, на любой нагрузке

Уд. расход тепла

11,773 кДж/кВтч

10,265 кДж/кВтч

10,104 кДж/кВтч

Скорость силовой турбины

5,750 - 12,075 об/мин

5,750 - 12,075 об/мин

Степень сжатия

Расход выхлопных газов

Температура выхлопных газов

542 °C (1,008 °F)

491 °C (916 °F)

512 °C (954 °F)

NO X выбросы

Газ топливо с системой DLE

1) Электрическая 2) На валу

Рис. 1. Конструкция газогенератора SGT-300


Для промышленной генерации энергии применяется одновальный вариант ГТУ SGT-300 (см. рис. 1). Она идеально подходит для комбинированного производства тепловой и электрической энергии (ТЭС). ГТУ SGT-300 является промышленной ГТУ, изначально спроектированной для генерации и обладает следующими эксплуатационными преимуществами для эксплуатирующих организаций:

Электрический КПД - 31%, что в среднем выше на 2-3% КПД ГТУ меньшей мощности, благодаря более высокому значению КПД достигается экономический эффект на экономии топливного газа;

Газогенератор укомплектован низкоэмиссионной сухой камерой сгорания по технологии DLE, что позволяет достичь уровня выбросов NOx и CO, более чем в 2,5 раза ниже установленных нормативными документами;

ГТУ имеет хорошие динамические характеристики благодаря одновальной конструкции и обеспечивает устойчивую работу генератора при колебаниях нагрузки внешней присоединенной сети;

Промышленная конструкция ГТУ обеспечивает длительный межремонтный ресурс эксплуатации и является оптимальной с точки зрения организации сервисных работ, которые проводятся на месте эксплуатации;

Существенное снижение пятна застройки, точно также, как и инвестиционных затрат, включающих приобретение общестанционного механического и электрического оборудования, его монтаж и пусконаладку, при применении решения на базе SGT-300 (рис. 2).

Рис. 2. Массогабаритные характеристики блока SGT-300


Общая наработка установленного парка SGT-300 составляет более 6 млн ч, с наработкой лидерного ГТУ 151 тыс. ч. Коэффициент готовности/доступности - 97,3%, коэффициент надежности - 98,2%.

Компания OPRA (Нидерланды) - ведущий поставщик энергетических систем на основе газовых турбин. OPRA разрабатывает, производит и продает современные газотурбинные двигатели мощностью около 2 МВт. Ключевым направлением деятельности компании является производство электроэнергии для нефтегазовой промышленности.

Надежный двигатель OPRA OP16 обеспечивает более высокую производительность при меньшей себестоимости и большем сроке службы, чем какая-либо другая турбина этого класса. Двигатель работает на нескольких видах жидкого и газобразного топлива. Существует модификация камеры сгорания с пониженным содержанием загрязняющих веществ в выхлопе. Энергоустановка OPRA OP16 1,5-2,0 МВт будет надежным помощником в суровых условиях эксплуатации.

Газовые турбины OPRA являются совершенным оборудованием для генерации электроэнергии в автономных электрических и когенерационных системах малой энергетики. Разработка конструкции турбины велась более десяти лет. Результатом стало создание простого, надежного и эффективного газотурбинного двигателя, включая модель с низкими выбросами вредных веществ.

Отличительной особенностью технологии преобразования химической энергии в электрическую в OP16 является запатентованная система управления подготовкой и подачей топливной смеси COFAR, которая обеспечивает режимы горения с минимальным образованием окислов азота и углерода, а также минимум несгоревших остатков топлива. Оригинальной является также запатентованная геометрия радиальной турбины и в целом консольная конструкция сменяемого картриджа, включающего вал, подшипники, центробежный компрессор и турбину.

Специалистами компаний «ОПРА» и «МЭС Инжиниринг» разработана концепция создания уникального единого технического комплекса мусоропереработки. Из 55-60 млн т всех ТБО, образующихся в России за год, пятая часть - 11,7 млн т - приходится на столичный регион (3,8 млн т - Московская область, 7,9 млн т - Москва). При этом за МКАД из Москвы вывозится 6,6 млн т бытовых отходов. Таким образом, в Подмосковье оседает более 10 млн т мусора. С 2013 г. в Московской области из 39 мусорных полигонов закрыты 22. Заменить их должны 13 мусоросортировочных комплексов, которые будут введены в 2018-2019 гг., а также четыре мусоросжигательных завода. Такая же ситуация происходит и в большинстве других регионов. Однако, не всегда строительство крупных мусороперерабатывающих заводов является выгодным, поэтому проблема мусоропереработки очень актуальна.

Разработанная концепция единого технического комплекса объединяет полностью радиальные установки ОПРА, обладающие высокой надежностью и эффективностью, с системой газификации/пиролиза компании «МЭС», которая позволяет обеспечить эффективное превращение различных видов отходов (включая ТБО, нефтешламы, загрязненную землю, биологические и медицинские отходы, отходы деревообработки, шпалы и т.д.) в отличное топливо для выработки тепла и электроэнергии. В результате продолжительного сотрудничества спроектирован и находится в стадии реализации стандартизированный комплекс переработки отходов производительностью 48 т/сут. (рис. 3).

Рис. 3. Общая планировка стандартного комплекса переработки отходов мощностью 48 т/сут.


В состав комплекса включается установка газификации МЭС с площадкой хранения отходов, две ГТУ ОПРА суммарной электрической мощностью 3,7 МВт и тепловой мощностью 9 МВт, а также различные вспомогательные и защитные системы.

Реализация подобного комплекса позволяет на площади 2 га получить возможность для автономного энерго- и теплоснабжения различных производственных и коммунальных объектов, решив при этом вопрос утилизации различных видов бытовых отходов.

Отличия разработанного комплекса от существующих технологий вытекают из уникального сочетания предлагаемых технологий. Малые (2 т/ч) объемы потребляемых отходов, наряду с малой требуемой площадью участка позволяют размещать данный комплекс непосредственно вблизи от небольших поселений, промышленных предприятий и т.п., значительно сэкономив средства на постоянную перевозку отходов к местам их утилизации. Полная автономность комплекса позволяет развернуть его практически в любой точке. Использование разработанного типового проекта, модульных конструкций и максимальная степень заводской готовности оборудования дает возможность максимально сократить сроки строительства до 1-1,5 лет. Применение новых технологий обеспечивает высочайшую экологичность комплекса. Установка газификации «МЭС» вырабатывает одновременно газовую и жидкую фракции топлива, а за счет двухтопливности ГТУ ОПРА они применяются одновременно, что повышает топливную гибкость и надежность энергоснабжения. Низкая требовательность ГТУ ОПРА к качеству топлива повышает надежность всей системы. Установка МЭС позволяет использовать отходы с влажностью до 85%, следовательно, не требуется сушка отходов, что повышает КПД всего комплекса. Высокая температура выхлопных газов ГТУ ОПРА позволяет обеспечивать надежное теплоснабжение горячей водой или паром (до 11 тонн пара в час при 12 бар). Проект является типовым и масштабируемым, что позволяет обеспечить утилизацию любого количества отходов.

Проведенные расчеты показывают, что стоимость выработки электроэнергии будет составлять от 0,01 до 0,03 евро за 1 кВтч, что показывает высокую экономическую эффективность проекта. Таким образом, компания «ОПРА» в очередной раз подтвердила свою направленность на расширение линейки применяемого топлива и повышение топливной гибкости, а также ориентацию на максимальное применение «зеленых» технологий в своем развитии.

То и дело в новостях говорят, что, к примеру, на такой то ГРЭС полным ходом идет строительство ПГУ -400 МВт, а на другой ТЭЦ-2 включена в работу установка ГТУ-столько то МВт. О таких событиях пишут, их освещают, поскольку включение таких мощных и эффективных агрегатов — это не только «галочка» в выполнении государственной программы, но и реальное повышение эффективности работы электростанций, областной энергосистемы и даже объединенной энергосистемы.

Но довести до сведения хочется не о выполнении госпрограмм или прогнозных показателей, а именно о ПГУ и ГТУ. В этих двух терминах может запутаться не только обыватель, но и начинающий энергетик.

Начнем с того, что проще.

ГТУ — газотурбинная установка — это газовая турбина и электрический генератор, объединенные в одном корпусе. Ее выгодно устанавливать на ТЭЦ. Это эффективно, и многие реконструкции ТЭЦ направлены на установку именно таких турбин.

Вот упрощенный цикл работы тепловой станции:

Газ (топливо) поступает в котел, где сгорает и передает тепло воде, которая выходит из котла в виде пара и крутит паровую турбину. А паровая турбина крутит генератор. Из генератора мы получаем электроэнергию, а пар для промышленных нужд (отопление, подогрев) забираем из турбины при необходимости.

А в газотурбиной установке газ сгорает и крутит газовую турбину, которая вырабатывают электроэнергию, а выходящие газы превращают воду в пар в котле-утилизаторе, т.е. газ работает с двойной пользой: сначала сгорает и крутит турбину, затем нагревает воду в котле.

А если саму газотурбинную установку показать еще более развернуто, то будет выглядеть так:

На этом видео наглядно показано какие процессы происходят в газотурбинной установке.

Но еще больше пользы будет в том случае, если и полученный пар заставить работать — пустить его в паровую турбину, чтобы работал еще один генератор! Вот тогда наша ГТУ станет ПАРО-ГАЗОВОЙ УСАНОВКОЙ (ПГУ).

В итоге ПГУ — это более широкое понятие. Эта установка – самостоятельный энергоблок, где топливо используется один раз, а электроэнергия вырабатывается дважды: в газотурбинной установке и в паровой турбине. Этот цикл очень эффективный, и имеет КПД порядка 57 %! Это очень хороший результат, который позволяет значительно снизить расход топлива на получение киловатт-часа электроэнергии!

В Беларуси для повышения эффективности работы электростанций применяют ГТУ как «надстройку» к существующей схеме ТЭЦ, а ПГУ возводят на ГРЭСах, как самостоятельные энергоблоки. Работая на электростанциях, эти газовые турбины не только повышают «прогнозные технико-экономические показатели», но и улучшают управление генерацией, так как имеют высокую маневренность: быстроту пуска и набора мощности.

Вот какие полезные эти газовые турбины!

Рекомендуем почитать

Наверх