Привет студент. Топливные системы самолетов Панель оборудования топливного бака самолета

Судебные споры 12.03.2021


Разберём следующую, жизненно важную самолётную систему - топливную. Основное её предназначение, это обеспечение бесперебойной подачи топлива к двигателям самолёта. Топливная система самолёта состоит из системы размещения топлива на самолёте, системы подачи его в двигатели, системы измерения топлива в баках , и системы заправки. Всё топливо, на современных самолётах, располагается, как правило, в крыле, в нескольких баках. Количество баков в может быть различным от трёх до восьми и более.(см. рис1,2,3) На рисунке 1 показано размещение топливных баков на самолёте Ту-134 , где 1,2,3 левые и правые баки, "рб" расходный бак, "дб" бополнительные баки.


Рис.1

На рисунке 2 показано расположение баков на самолёте Ту-154


Рис.2

На рисунке 3 показано расположение баков на самолётах семейства А-320. Дренажный бак на концах крыла предназначен для перетекания в него топлива из других баков, в случае его теплового расширения, при стоянке с полными баками, а также для кратковременного заполнения этого бака в случае отказа клапанов заправки, во избежании раздутия баков.


Рис.3

Есть самолёты у которых часть топливных баков располагается в хвостовой части самолёта, например Ил-62, боинг-747.
Топливный бак представляет из себя кессон , являющийся силовым элементом крыла самолёта. Изнутри топливный бак по всей поверхности покрыт специальным герметизирующим составом, который предотвращает утечки топлива через стыковые технологические поверхности. Этот состав, в жидком состоянии, наносится на внутреннюю поверхность кессона при его изготовлении, затем на специальном стенде, кессон вращается во всех плоскостях, обеспечивая равпомерное растекание герметизирующего состава по всей внутренней поверхности.
Основной принцип топливных систем всех самолётов заключается в том, чтобы каждый двигаталь питался от своего бака, левый двигатель от левого бака или группы баков , средний, от центрального бака, правый двигатель от правой групы баков. Если двигателей на самолёте всего два, то сначала они питаются от центрального бака, а затем каждый от своего.
Для обеспечения бесперебойной подачи топлива к двигателям, все топливные баки, или группы баков, кольцуются между собой посредством специальных кранов кольцевания "1"(см рис.4)


Рис.4

Краны кольцевания в нормальном состоянии перекрыты, и открываются только в случае отказа какой-либо системы подачи топлива к любому двигаталю, обеспечивая его бесперебойную работу.
В топливной магистрали каждого двигателя установлены фильтры тонкой очистки "4"(рис4). Фильтроэлемент выполнен из металлической сетки саржевого плетения с размером плетения всего несколько микрон. В случае засорения топливного фильтра, вокруг него предусмотрен обводной трубопровод "5"(см.рис4), по которому топливо пойдёт не очищенным, также обеспечивая работу двигателя.
Непосредственно перед двигателем устанавливается пожарный кран "3"(рис4), который перекрывается в случае возникновения пожара на двигателе. При стоянке самолёта с выключенным двигателем пожарный кран закрыт.
Авиационное топливо не является идеальным чистым, хотя и имеет высокую степень очистки, оно содержит растворимую в нём воду. Вода в топливо поступает из атмосферы, во время контакта поверхности топлива с воздухом в топливном баке. Т.к. плотность воды больше чем у топлива, вода постепенно отстаивается и опускается на дно бака. Перед каждой новой заправкой топлива и после её окончания производится слив отстоя воды из топливных баков через специальные краны слива. Это является обязательной операцией при подготовке самолёта к вылету. Но тем не менее растворённая вода всё равно присутствует в топливе.
Как уже отмечалось на странице , температура воздуха на высоте 10-11километров составляет -50 0 С. Топливо при таких температурах особо не меняет своих свойств, а вот растворённая в нём вода кристаллизуется и попадая на топливные фильтры кристаллы воды начисто их забивают. Чтобы предотвратить негативное воздействие этого явления, в магистрали подачи топлива к каждому двигателю установлены топливно маслянные радиаторы (агрегаты) ТМР(ТМА)"2"(см. рис4). Установка этих агрегатов убивает сразу два зайца, во-первых в них происходит нагрев топлива (после прохождения ТМР кристаллизация воды отсутствует), во-вторых происходит охлаждение масла из маслянной системы двигателя. Т.о. получаем двойную выгоду. Кроме того, для предотвращения кристаллообразования в зимнее время в топливо многих самолётов добавляюися специальные присадки, их применение также повышает стабильность работы топливной системы.
Исходя из условия обеспечения сохранения центровки в заданных пределах, выработка топлива из баков осуществляется в определённой последовательности. Для каждого самолёта она своя, есть самолёты с простой последовательностью выработки, например на Б-737, сначали вырабатывается топливо из центрального бака, а потом из крыльевых. На Як-42 вообще нет ни какой последовательности, здесь центровка ни как не зависит от выработки топлива. Но бывают случаи по сложнее, в качестве примера приведу последовательность выработки на самолёте Ту-134(см рис1). При полной заправке, сначала топливо вырабатывается из 3их баков полностью(1очередь), затем топливо начинает вырабатываться из 1вых баков до остатка в них 2200кг(2а очередь). После остатака 2200кг в 1вых баках, выработка переключается на 2ые баки(3я очередь), после полной выработки из 2ых баков, выработка вновь переключается на 1ые баки(2б очередь), здесь происходит полная выработка топлива. Надо отметить, что последовательность выработки топлива полностью автоматизирована и лишь контролируется экипажем ВС, но в случае её отказа, выработка может осуществляться и в ручную, но с соблюдением той же последовательности. Т.о. каждому самолёту присуща своя система выработки.
Для обеспечения бесперебойной подачи топлива к двигателям при эволюциях, на самолётах установлены расходные баки . Всё топливо, подающееся к двигателям, проходит через эти баки. Смысл их в том, что они всегда полные. Во время полёта самолёта происходит постоянное их пополнение из топливных баков специальными насосами перекачки, в самих же расходных баках установлены подкачивающие топливные насосы . Для обеспечения надёжности системы, на многих самолётах насосы спаренные, причём иногда электропитание таких насосов производится от различных шинн, т.е. имеет различное напряжение.
К перекачивающим насосам относятся внутрибаковые насосы ЭЦН-91С, ЭЦН-91Б внебаковые агр.463 и др. К подкачиваемым ЭЦН-14, ЭЦН-45, ЭЦНГ-5 и др.(cм. рис5)



Рис.5

Сигнализация работы всех топливных насосов работает по следующему принципу: в топливном трубопроводе, за каждым насосом, устанавливается датчик мембранного типа. Как только насос начинает работать, давление топлива в трубопроводе за насосом увеличивается, мембрана датчика прогибается и замыкает контакты цепи сигнализации. В результате в кабине пилотов на панели топливной системы, загорается лампочка или индикатор работы конкретного насоса, как только топливо в баке заканчивается, насос начинает прохватывать воздух, давление в трубопровобе начинает "скакать", в результате лампочка на топливной панели моргает, сигнализируя об оканчивающемся топливе. Включение насосов без топлива не рекомендуется, т.к. топливо одновременно является смазывающим элементом трущихся детелей насоса. Все подкачивающие и перекачивающие насосы центробежного типа, устанавливаются как можно ближе к дну бака, чтобы обеспечить максимальную выработку топлива.

Измерение топлива в баках происходит с помощью датчиков ёмкостного типа . Такой датчик представляет собой, по сути, конденсатор, ёмкость которого меняется в зависимости от среды между пластинами. Изменение уровня среды, приводит к изменению его ёмкости, замеряя эту ёмкость,фактически мы замеряем уровень.
В каждом баке, в разных местах, установлено по несколько ёмкостных датчиков . Так как высота бака в разных местах разная, то и длина датчиков будет различна (см.рис6). Все ёмкостные датчики устанавливаются в баках и регулируются таким образом, чтобы при эволюциях самолёта показания датчиков на указателе количества топлива были не изменны. Причём замерять можно как суммарное количество топлива, так и количество топлива в каждом баке по отдельности.
Заправка самолёта топливом может осуществляться централизованно, т.е. через заправечный шланг могут заправляться сразу все баки, и открытым способом, т.е. через верхние заправочные горловины. К недостаткам открытой заправки можно отнести то, что при ней возможно попадание грязи, мусора и атмосферных осадков в бак через горловину, а также более длительное время заправки, ведь баки заправляются по одному. На современных самолётах открытая заправка уже не применяется.
Для обеспечения центровки самолёта при его стоянке, централизованная заправка осужествляется в строгой последовательности. Для каждого самолёта она своя. Выбор последовательности заправляемых баков, зависит от количества заправляемого топлива. Если самолёт летит не на максимальное расстояние, то нет необходимости заправлять полные баки, при этом некоторые баки могут вообще не заправляться, например на Ту-134 при длительности рейса 2 часа, третьи баки не заправляются, на Б-737 остаётся сухим центральный бак.
Централизованная заправка осуществляется со специального щитка заправки. На нем, как правило, выставляется способ заправки(в автомате или вручную). При автоматическом способе заправки, на специальном задатчике выставляется количество заправляемого топлива и открывается центральный заправочный клапан, клапаны заправки каждого бака могут открываться автоматически, а могут открываться и вручную. Закрытие клапанов заправки, при достижении заданного количества топлива, происходит автоматически от датчиков заправки, которые, конструктивно, аналогичны датчикам системы измерения, т.е. являются ёмкостными.
При ручной централизованной заправке необходимо постоянно контролировать количество заправляемого топлива, воизбежании перезаправки топливного бака.
Для предотвращения перезаправки в автоматическом режиме, применяется несколько блокировок закрытия клапанов заправки каждого бака, как от датчиков заправки, так и применение простого поплавкового клапана.
На всех самолётах применяется система дренажирования топливных баков . Конструктивно они выполнены по разному, но суть у всех одна, топливные баки болжны быть сообщены с атмосферой, иначе при выработке топлива в баке начнёт создаваться вакуум и топливо перестенет поступать к двигателям. У системы дренажа есть и ещё одна функция, это предотвращение раздутия баков на стоянке самолёта с полной заправкой при повышении температуры воздуха. Некоторые самолёты просто сбрасывают увеличившееся в объёме топливо на стоянку.
Следует отметить, что измерение топлива при заправке самолёта производится в литрах, галонах и других размерностях объёма. А вот измерение количества заправленного топлива производится уже в килограммах или тоннах. Для чего это зделано, наверно понятно. Вес топлива, это уже массовая характеристика, в литрах взлётный вес не измериешь.
При выполнении заправки самолёта любым способом всегда строго соблюдаются правила техники безопасности и пожарной безопасности. На территории аэропорта вообще запрещено курение в неположенном месте. Перед заправкой, сам самолёт и подъехавший к нему топливозаправщик, специальными тросами заземляются к специальным колодцам заземления, каждый по отдельности, также прокладывается специальный трос выравнивания потенциала между самолётом и топливозаправщиком. Только после прокладки всех этих тросов, можно подсоединять заправочный рукав к заправочному штуцеру самолёта. Ну вот наверное и всё про топливную систему, у кого возникли вопросы пишите на

Размещение на самолете отсеков для топливных баков производится при компоновке самолета, при этом масса топлива в отсеке определяется как

M т =ρ(W 0 -W св -W a -W ст -W м.б.),= ρ W т

W 0 - объем отсека в конструкции самолета для бака;

ρ - плотность топлива при данной температуре;

W св - свободный объем надтопливного пространства, необходимый для расширения топлива при изменении его температуры;

W a - объем внутрибаковой арматуры, насосов, топливомеров и др.;

W ст - объем стенок баков;

W м.б - объем пространства между внешней поверхностью бака и элементами конструкции самолета;

W т – объем залитого топлива.

Условно приняв плотность топлива при температуре 20 °С за исходную и введя понятие коэффициента заполнения отсека к з.о. , можно оценивать и сопоставлять использование объемов отсеков самолета для размещения топлива. Этот коэффициент представляет собой отношение объема, заполняемого топливом, к объему пространства внутри конструкции самолета, отведенного для него: к з.о. = W т / W 0 .

В зависимости от типа самолета, места расположения, назначения и конструктивной схемы бака этот коэффициент может меняться в довольно широких пределах. Наибольшее значение, близкое к единице, он имеет для баков, выполненных в виде герметизированных отсеков самолета, из которых топливо вытесняется сжатым газом. Наименьшее значение коэффициента заполнения отсека (к з.о. = 0,8-0,9) бывает у расходных протектированных баков с большим количеством устройств автоматического управления порядком выработки топлива, насосами и другим оборудованием.

Увеличение потребных запасов топлива вызывает определенные трудности в его размещении на самолетах. На транспортных самолетах в фюзеляже размещаются пассажиры и груз, а топливо, в основном, может быть размещено только в консолях крыла. В связи с этим выбор высоты его профилей производится не только из аэродинамических требований, но и из условия размещения в них необходимых запасов топлива. Для наиболее рационального использования внутренних объемов крыльев и увеличения емкости топливной системы на современных самолетах под топливные баки используются образованные конструкцией крыла отсеки. Они покрываются изнутри герметиком и называются баками-кессонами.

Обычно под топливо отводится только часть объема крыла, а в остальном объеме размещаются насосы, механизация крыла, шасси и элементы системы управления самолетом. При верхнем расположении крыла его центроплан может использоваться для размещения топлива, что не допустимо для низкоплана (возможно возгорание топлива при аварийной посадке на “живот”).

Необходимо отметить, что масса топлива в полете разгружает крыло, благодаря чему получается определенный выигрыш в массе его конструкции. При посадке масса топлива увеличивает нагрузку, действующую на крепление крыла, но обычно посадка совершается с небольшим количеством топлива в крыльевых баках. В аварийных случаях посадки через небольшой промежуток времени после взлета предусматривается слив топлива из баков, например на самолетах Ту-104, Ту-114 и др.

Для восполнения запасов топлива и увеличения продолжительности полета на боевых самолетах применяется дозаправка топливом в полете от специальных самолетов-заправщиков. На пассажирских самолетах из соображений безопасности заправка топливом в полете не предусматривается.

На самолетах-истребителях из-за ограниченных объемов конструкции самолета основная масса топлива размещается в фюзеляже и дополнительно в крыле. Фюзеляжные баки имеют сложную форму, которая определяется местом их расположения. Они имеют относительно большую высоту, что способствует более полной выработке топлива. На этих самолетах фюзеляж имеет относительно небольшой свободный объем для топлива в связи с размещением в нем специального оборудования. Поэтому для увеличения запасов топлива применяются подвесные топливные баки.

Подвесные топливные баки на самолетах со стреловидным крылом устанавливают под фюзеляжем и консолями. На самолетах с малыми углами стреловидности крыла подвесные баки устанавливают на концах крыла, что объясняется наименьшим увеличением лобового сопротивления, эффективным увеличением площади крыла и разгрузкой крыла.

Емкость подвесных топливных баков колеблется от 500л до 5000 л, а на некоторых типах самолетов, например бомбардировщике В-58, где подвесной топливный бак выполнен в виде контейнера, подвешиваемого под фюзеляжем, достигает 10000 л.

Подвесные баки оказывают отрицательное влияние на летные характеристики самолета (ухудшаются маневренность и разгонные характеристики, увеличивается лобовое сопротивление, уменьшается высотность и т. д.).

Объем подвесных сбрасываемых баков для конкретного самолета определяется расходом топлива на неответственных участках траектории полета (запуск, опробование, руление, взлет, набор высоты, полет над своей территорией и т. д.). При необходимости на ответственных участках траектории полета (эволюции, воздушный бой) подвесные баки сбрасываются, не зависимо от наличия в них топлива.

Большое распространение на боевых самолетах получила заправка топливом в полете, которая позволяет увеличить продолжительность и повысить боевую эффективность самолета. Размещение топлива во всех свободных объемах крыла и фюзеляжа, а в некоторых случаях и в вертикальном оперении приводит к большому количеству топливных баков, расположенных в различных местах продольной оси самолета. Поэтому по мере выработки топлива из баков происходит изменение положения центра масс самолета.

При компоновке самолета выбирается такое расположение топливных баков, чтобы центр масс самолета, полностью заправленного топливом, располагался вблизи центра масс самолета, не заправленного топливом. В зависимости от компоновки самолета могут быть два варианта размещения топлива на самолете. Симметричное расположение, когда центры масс полностью заправленных баков находятся на одинаковом расстоянии х от центра масс самолета и объемы топлива W 1 и W 2 передних и задних баков (относительно центра масс самолета) равны между собой. Не симметричное расположение, когда объемы баков и их расстояние до центра масс самолета не равны, а равны только моменты масс баков:

ρW 1 X 1 = ρW 2 X 2 .

В первом случае расход топлива при необходимости поддержания постоянной центровки самолета должен производиться при сохранении равенства расходов из передних и задних баков (Q 1 = Q 2 ). При этом расход топлива из каждого бака должен быть пропорционален расходу топлива на двигатель:

Q 1,2 = ,

Q дв. - расход топлива на двигатель;

n - количество двигателей, питаемых из одного расходного бака;

k - количество одновременно вырабатываемых баков в расходный бак.

Неравномерность выработки в этом случае передних и задних баков, т. е. изменение центровки самолета, может происходить из-за различных расходов топлива двигателями и нестабильности гидравлических характеристик перекачивающих магистралей.

На самолетах, где топливо должно вырабатываться несимметрично, перекачка топлива производится с преимущественным расходом топлива из передних или задних баков.

При несимметричном расположении топлива, если не требуется компенсация центровки для сохранения равенства моментов, например при десантировании грузов, расход топлива производится или непрерывно пропорционально закону

Q 1 = или Q 1 = Q 2

или отдельными порциями в границах заданного поля центровок.

В общем случае центровка самолета при расходовании топлива из баков оценивается:

= /b сах,

где G i – запас (или выработка части топлива) i топливного бака;

x i – координата центра масс соответствующего топливного бака относительно носка средней аэродинамической хорды;

b сах, средняя аэродинамическая хорда.

Положение центра масс во время полета определяет необходимые характеристики устойчивости, управляемости при наименьших потерях топлива на балансировочное сопротивление на всех участках траектории полета.

Для самолетов с различной стреловидностью крыла рекомендуются следующие диапазоны центровок:

самолеты с прямым крылом 0,20…0,25;

самолеты со стреловидным крылом (χ=35 0 …40 0) 0,26…0,30;

самолеты со стреловидным крылом (χ=50 0 …55 0) 0,30…0,34;

самолеты с треугольным крылом

малого удлинения 0,32…0,36.

По функциональному назначению топливные баки, являющиеся частью конструкции самолета, подразделяются на расходные и основные. Основные топливные баки предназначены для размещения наибольшего объема топлива на борту. Эти баки могут размещаться в различных «свободных» местах самолета (с учетом необходимых требований), что приводит к их значительному количеству.

Расходные топливные баки, относящиеся к основной топливной системе, служат как для его размещения части топлива, так и для обеспечения двигателей топливом. Кроме того, установленная в них автоматика позволяет управлять порядком выработки топлива в пределах всей топливной системы. Расходные баки обычно размещаются вблизи центра масс самолета так, чтобы существенно не повлиять на изменение центровки самолета после выработки из них топлива.

Наиболее целесообразно располагать в расходных топливных баках заборные отсеки или отсеки отрицательных перегрузок, которые обеспечивают бесперебойную подачу топлива при любых возможных положениях и перегрузках самолета.

Кроме того, применение системы расходных баков позволяет:

а) простыми конструктивными методами обеспечить в расходных баках посадочный остаток топлива (резерв топлива);

б) при сложных схемах перекачки упростить контроль экипажем автоматики и обеспечить резерв времени в случае появления отказа в магистралях перекачки;

в) снизить и выравнить температуру топлива, подаваемого к двигателю;

г) конструктивно обеспечить дегазацию топлива, поступающего в расходный бак из очередных баков, и улучшить кавитационные характеристики насосов подкачки;

д) обеспечить частичный отстой топлива, поступающего к двигателям;

е) мощные насосы подачи топлива в двигатели устанавливать только в расходных баках, во всех остальных баках устанавливать перекачивающие низконапорные и, следовательно, и более легкие насосы.

Количество расходных баков обычно соответствует количеству двигателей, но в отдельных случаях могут применяться схемы с общим расходным баком для нескольких двигателей.

Схема магистралей перекачки зависит от количества топливных баков, их расположения на самолете, минимальной массы и надежности работы

Выполнение заданной программы перекачки топлива на маневренных самолетах требует от системы топливных баков, трубопроводов и агрегатов стабильности гидравлических характеристик вне зависимости от эволюции самолета в пространстве.

Из всех основных баков топливо перекачивается в расходные. При этом порядок перекачки топлива определяется необходимой центровкой самолета в полете и требованиями, выполнение которых необходимо для нормального функционирования самой топливной системы:

Порядок перекачки топлива должен обеспечивать поддержание расходного бака (баков) полным или почти полным до опорожнения всех других баков;

Во всех случаях остаток топлива в расходном баке (баках) к моменту опорожнения всех других емкостей не должен быть меньше резерва топлива,

Порядок перекачки топлива в расходный бак должен исключить попадание топлива в уже выработанные основные баки, так как по окончании выработки топлива из бака перекачивающий насос оголяется, выходит на нерасчетный режим и должен быть выключен экипажем или автоматически. Это же требование сохраняется и при подаче топлива в расходный бак из других баков под давлением воздуха (выдавливанием). В этом случае после окончания выработки топлива из бака наддув отключается и топливо, вновь попавшее в бак, останется невыработанным.

На самолетах-истребителях при отсутствии подвесных сбрасываемых баков начинать перекачку топлива в расходный бак следует из крыльевых баков. Объясняется это малой высотой и большой площадью крыльевых топливных баков, что затрудняет полную и равномерную выработку топлива из них, особенно при эволюциях самолета. Темп перекачки топлива из крыльевых баков обычно невелик, так как прокладка трубопроводов больших диаметров в тонких крыльях затруднительна. В крыльевых баках самолетов-истребителей перекачивающие насосы из-за их больших габаритов обычно не применяются, а подача топлива производится под давлением воздуха, повышение которого связано с увеличением массы конструкции и трудностями обеспечения герметичности баков-отсеков.

Необходимо отметить, что на некоторых типах самолетов-истребителей с целью разгрузки конструкции крыла, в полете первоначально топливо частично вырабатывается из фюзеляжных баков, а затем – из крыльевых.

5.6. СПОСОБЫ ПОДАЧИ ТОПЛИВА К ДВИГАТЕЛЯМ

Схемы

На выбор рациональной схемы подачи топлива к двигателям оказывают влияние: назначение и компоновка самолета, режимы его полета, тип и число двигателей, сорт применяемого топлива, мероприятия по обеспечению безопасности и высотности полетов. Сложность создания рациональной схемы подачи топлива к двигателям обусловлена: необходимостью размещения большого количества топлива в ограниченном объеме, обеспечения бесперебойной работы двигателей в большом диапазоне скоростей и высот полета, включения автоматических устройств, обеспечивающих заданную программу выработки топлива и контроль работы топливной системы.

Одним из важнейших фрагментов схемы магистралей подачи топлива к двигателям является выработка топлива из баков. Для обеспечения выработки топлива применяются следующие способы: самотеком, вытеснением, насосом подкачки

Выработка топлива из баков самотеком (рис. 5.4 а) применяется на самолетах со сравнительно маломощными ПД, где расходы топлива и потребное давление на входе в насос двигателя невелико. На самолете с двигателями, развивающими большую тягу (мощность), выработка топлива из баков самотеком применяется для переливания топлива из бака в бак, как сообщающиеся емкости (или в пределах одной группы, или в качестве аварийного перелива топлива).

Выработка топлива из баков вытеснением (рис. 5.4 б) осуществляется сжатым воздухом или нейтральными газами. Надтопливное пространство бака изолировано от окружающей атмосферы. Преимуществами такой выработки являются: возможность полета на большой высоте, отсутствие топливных насосов на самолете, возможность регулирования давления, отсутствие дренажа, потерь на испарение топлива и расхода энергии на привод насосов. Однако имеются существенные недостатки: большая масса нагруженных баков внутренним давлением и малая живучесть их при повреждении.

На современных самолетах гражданской авиации выработка топлива из баков только вытеснением не применяется, но в некоторых случаях возможен наддув топливного бака небольшим избыточным давлением (15…30 кПа). Такое избыточное давление получают от компрессора двигателя (через редуцирующее устройство) или за счет скоростного напора.

Выработка топлива из баков насосом подкачки (рис. 5.4 в) приводит к тому, что баки нагружены в меньшей степени, стенки их могут быть изготовлены более тонкими, а баки - легкими. Бак может быть расположен и ниже насоса подкачки, возможна автоматизация управления насосом. Подкачка позволяет создать достаточное давление на входе в основной насос двигателя, обеспечивая необходимую высотность. Недостатком способа является утяжеление топливной системы. У насосов подкачки с электрическим приводом повышенная пожарная опасность. Недостаточна высотность самих насосов. Для повышения надежности иногда в топливной магистрали устанавливаются два параллельно работающих насоса.

Системы перекачки топлива на самолете выполняют различные функции и могут быть подразделены на основную и вспомогательную.

Основная система перекачки топлива участвует непосредственно в цепи подачи топлива из очередных баков в расходный с подачей топлива, необходимой для питания двигателей.

Вспомогательные системы обеспечивают откачку топлива из дренажных бачков, выработку остатков топлива из баков и трубопроводов и т.д.

Система балансировочной перекачки обеспечивает создание необходимого балансировочного момента самолета. Наибольшее распространение получили системы перекачки топлива в расходные баки с центробежными электроприводными насосами. Такие системы применяются почти на всех отечественных и зарубежных самолетах.

На рис. 5.5 дана принципиальная схема топливной системы самолета. Она представляет многобаковую систему, обеспечивающую бесперебойную подачу топлива к двигателю на всех допускаемых режимах эксплуатации самолета. Эта схема, состоящая из ряда магистралей, отражает наличие основных, необходимых агрегатов и устройств, обеспечивающих надежную работу силовой установки. В зависимости от назначения, типа самолета и условий его эксплуатации состав топливной системы может варьироваться не только по номенклатуре самих подсистем, но и по входящим в них агрегатам. Поэтому представленную схему следует рассматривать, как функциональную.

В рассматриваемую схему входят:

Подкачивающая магистраль (подача топлива из расходного бака к двигателю);

Перекачивающая магистраль, обеспечивающая подачу топлива из крыльевых и фюзеляжных основных и подвесных топливных баков;

Дренажная магистраль.

Рассмотрим подачу топлива по предложенной схеме (см. рис. 5.5). Топливо из расходного бака 1 поступает в топливозаборник отсека отрицательных перегрузок 8. При действии отрицательных перегрузок топливо, занимая верхнее положение, беспрепятственно будет поступать в заборный патрубок вплоть до полной выработки отсека. Его заполнение происходит при возвращении самолета к нормальному полету через клапаны 9. Последние исключают выливание

Рис.5.5 Принципиальная схема топливной системы самолета 1 - расходный топливный бак, 2 -фюзеляжный топливный бак, 3. - крыльевые топливные баки, 4 - подвесной топливный бак, 5 - подкачивающая магистраль, 6 - перекачивающая магистраль, 7 - аварийная пере­ливная магистраль, 8 - отсек отрицательных перегрузок, 9 - клапан отсека отрицательных перегрузок, 10 -подкачивающий центробежный насос (ГШН), 11 - двигательный центробежный насос (ДЦН), 12 - обратный клапан, 13-топливный аккумулятор, 14 -топливно-масляный аккумулятор, 15 - термо клапан, 16-фильтр тонкой очистки, 17 - перекрывной (противопожарный) кран, 18 - датчик расходомера, 19,21 - поплавковые гидроклапаны, 20 - перекачивающий центробежный насос, 22 - топливный клапан с сервоприводом,23 -гидроклапан выработки топлива, 24 - гидроклапан дренажа крыльевых топливных баков, 25 - дренажная магистраль, 26 - предохранительный клапан, 27 - линия командного давления выработки топлива, 28 - линия командного давления дренажа крыльевых топливных баков,29-сигнализатор давления, 30 - датчик аварийного остатка топлива.

топлива из отсека при некоторых эволюциях самолета. Следует отметить, что отсеки отрицательных перегрузок устанавливаются на пилотажных машинах, а их объем обеспечивает работу двигателя в течение (15…30)с действия отрицательных перегрузок.

Подается топливо к двигателю подкачивающим насосом 10. Для повышения надежности работы в расходных баках устанавливают, как правило, по два насоса с обязательной установкой обратных клапанов на их выходе. При отказе одного из насосов его обратный клапан перекроет перелив топлива обратно в бак от работающего насоса. Дублирующий насос работают или параллельно с основным, или имеет автономное управление и включаются в случае выхода из строя основного насоса.

В качестве дублирующих обычно применяют однотипные насосы, но известны системы с дублирующими насосами, имеющими неэлектрический привод (эжекторные или турбоприводные насосы). В последнем случае может обеспечиваться также перекачка топлива в аварийном случае при отказе системы электропитания самолета.

На самолетах, имеющих большие расходы топлива, в отдельных случаях в качестве основных насосов перекачки топлива применяются центробежные насосы с приводом от воздушной или гидравлической турбины.

В последнее время широкое распространение в системах перекачки топлива (особенно в режиме доработки) получили струйные насосы.

На современных самолетах для обеспечения надежной подачи топлива к двигателям (в том числе и для исключения кавитации на входе в основной насос двигателя) применяется многоступенчатая подкачка. Обычно обходятся одним насосом подкачки первой ступени (НП1) 10и одним насосом подкачки второй ступени на двигателе (НП2) 11. При этом НП1 создает необходимое давление на входе в НП2, а последний обеспечивает потребное давление на входе в основной насос двигателя (ОНД). Преимуществами такой двухступенчатой подкачки является меньшая суммарная масса НП1 и НП2 и также меньшая мощность на их привод по сравнению с одним насосом подкачки, обеспечивающим потребное давление на входе в ОНД. Кроме того, такая схема включения насосов позволяет подавать топливо из расходного бака при меньших давлениях, что разгружает трубопроводы подкачивающей магистрали и исключает возникновение течи топлива.

Топливный аккумулятор 13 может выполнять двоякую функцию: обеспечить подачу топлива из расходного бака (в случае отсутствия отсека отрицательных перегрузок) при действии отрицательных перегрузок и гашения колебаний расхода и давления топлива на переходных режимах.

Топливный аккумулятор состоит из двух полостей, разделенных гибкой резиновой мембраной - воздушной полости и топливной полости. В воздушную полость подается давление воздуха (или газа), несколько меньшее давления, создаваемого топливным насосом расходного бака. Топливная полость сообщена с магистралью питания двигателя, За насосом расходного бака 10, устанавливается обратный клапан 12, пропускающий топливо только в сторону двигателя. При работе насоса за счет гибкой резиновой мембраны аккумулятор заполняется топливом и давлением топлива поддерживается в заполненном состоянии. При падении давления за насосом (уменьшение или прекращение подачи топлива) топливный аккумулятор компенсирует его подачу из своей полости. После восстановления давления за насосом расходного бака аккумулятор вновь заполняется топливом. Длительность действия отрицательных перегрузок и их величина зависят от предназначения самолета и режимов его полета.

На самолетах с ТРД в топливные системы включается топливно-масляные радиатор 14, охлаждающий масло маслосистемы самолета протекающим топливом. При этом нагретое топливо лучше распыляется в форсунках двигателя, предохраняет фильтр 16от возможного обмерзания. Если для питания двигателя требуется расход топлива меньше, чем для охлаждения масла в топливно-масляном радиаторе, то часть топлива, пройдя радиатор, перепускается посредством термоклапана 15, обратно в бак. Фильтр тонкой очистки топлива 9 обязателен во всех топливных системах. Тонкость фильтрации составляет около 15 мкм. При возможном его засорении топливо, минуя фильтроэлемент, поступает к двигателю по перепускному каналу, предусмотренному в конструкции самого фильтра.

Перекрывной (пожарный) кран 17 предназначен для прекращения подачи топлива к двигателю в аварийных ситуациях (пожар, посадка на «живот» и т.д.). Он имеет дистанционный сервопривод на закрытие. Открывается только на земле. Контрольно-измерительная аппаратура представлена датчиком аварийного остатка топлива 30, манометром или сигнализатором давления 29, расходомером 18.

При значительном количестве топлива для его размещения требуются большие баки. Затруднения при монтаже таких баков заставляют использовать сравнительно небольшие баки, но число их соответственно увеличивается. Для организации рациональной подачи топлива к двигателям с малыми гидравлическими потерями давления, небольшой массой магистралей и для обеспечения необходимого диапазона центровки баки объединяют в группы 2, обычно путем их последовательного соединения по схеме сообщающихся сосудов.

Причем таких групп может быть несколько и выработка топлива из каждой группы осуществляется своим перекачивающим насосом 20.

Уровень наполнения расходного бака контролируется клапаном 22. При наличии нескольких групп, каждая из них подключается к своему клапану, при этом порядок выработки топлива среди групп будет зависеть от уровня установки этих клапанов.

Поплавковый клапан (рис. 5.6) служит для предохранения расходного бака от переполнения при перекачке топлива из основных топливных баков.

Устанавливается клапан внутри расходного бака в верхней его части. Клапанный узел помещен в корпус 1. Разъем между корпусом и крышкой 5 герметизируется резиновой прокладкой 4. Внутри корпуса находится клапан-демпфер 2, перекрывающий доступ топлива в бак. Он состоит из грибкового клапана 20, и ряда деталей, собранных в один узел. При гидравлическом ударе клапан 2 перемещается в поршне вниз, отходит от седла корпуса и стравливает избыточное давление в бак. При достижении определенного уровня топлива в расходном баке клапан-демпфер 2 перекрывает доступ топлива в бак под действием пружины 3 и давления топлива в момент перекрытия клапаном 6 отверстия в крышке 5. При снижении уровня топлива в баке рычаг с поплавком клапан 6 открывается, что вызывает снижение давления под поршнем 18. Под давлением топлива клапан-демпфер 2, сжимая пружину 3, отходит от седла, открывая проходное сечение и топливо

через окна в корпусе 1 выливается в бак и заполняет его. При заполнении бака, когда поплавок занимает верхнее положение, клапан 6 перекрывает отверстие в крышке 5. Через жиклер в клапане 20 топливо протекает во внутреннюю полость клапана и своим давлением совместно с пружиной 3 прижимает клапан-демпфер к седлу, перекрывая поступление топлива в бак. Из крыльевых баков 3 и подвесного бака 4 топливо вылавливается под избыточным давлением, отбираемым либо от двигателя или баллонов сжатого газа.

По схеме выработка из бака 4 осуществляется в первую очередь с помощью поплавкового гидроклапана 19 и гидроклапана выработки топлива 23, их принципиальные схемы даны соответственно на рис.5.7 и 5.8.


При снижении уровня топлива в баке 1 поплавок 4 (см.рис.5.7) опускается вниз и шариковый клапан 2 перекрывает сброс топлива (отбор последнего осуществляется от насоса 10). Это вызывает рост давления в командной магистрали 6, которая подключена к мембранной коробке 1 гидроклапана (см. рис.5.8). Под действием избыточного давления мембрана 4, преодолевая усилие пружины 3, открывает клапан 6, чем обеспечивает подачу топлива в расходный бак. При достижении необходимого уровня топлива в расходном баке поплавок 4 (см. рис.5.7) откроет шариковый клапан, давление в командной магистрали упадет и клапан 23 (см. рис.5.5) перекроет подачу топлива из подвесного бака. После опорожнения подвесного бака гидроклапан выработки 23 будет находиться в открытом состоянии.

Выработка топлива из крыльевых баков контролируется гидроклапаном 21 и его поплавок установлен на более низком уровне топлива в расходном баке. При уменьшении уровня топлива, ниже заданного, в командной магистрали 28 возрастает давление, которое закрывает клапан 3 (см. рис. 5.9), отсекая полости крыльевых баков от общей системы дренажа. В крыльевых баках возрастает давление, под действием которого вытесняется через открытый клапан 23 и повышает уровень топлива в расходном баке 1. После чего гидроклапан 22 сбрасывает давление в командной магистрали 28. Клапан сброса командного давления 24 соединяет полости крыльевых баков с дренажем и подача топлива прекращается.

5.7 ТОПЛИВНЫЕ НАСОСЫ.

Насосы, применяемые в топливных системах самолетов, должны обеспечивать в зависимости от типа самолета подачу топлива от 0,3 до 100 м 3 /ч и более при сравнительно невысоком давлении (не более 200 ...250 кПа) и небольших подпорах на входе. Они должны быть надежными в работе, иметь малые массу и габаритные размеры и большой ресурс работы. Кроме того, к топливным насосам предъявляются специальные требования, обусловленные температурой топлива и окружающего воздуха, величинами перегрузок, положением агрегата в пространстве и т.д. Из большого количества существующих в настоящее время типов насосов наиболее полно соответствуют этим требованиям лопастные и струйные насосы.

Лопастные (центробежные) насосы по сравнению с объемными имеют ряд преимуществ:

Работают при значительной частоте вращения рабочего колеса;

Обладают высокой производительностью;

Характеризуются малыми габаритами и небольшой массой;

Упрощается соединение крыльчатки с приводом (как, правило, напрямую), что устраняет сложные передаточные механизмы;

Обеспечивают свободное протекание топлива при неподвижной крыльчатке.

Все эти преимущества и относительно высокий к.п.д. делают лопастные насосы надежными в работе и удобными в эксплуатации.

Струйные насосы по сравнению со всеми перечисленными типами насосов имеют наименьшую массу и большую надежность, но обладают не всегда удовлетворительными характеристиками по экономичности из-за малых значений к.п.д.

Центробежные топливные насосы приводятся в действие с помощью различных типов приводов. Непосредственный привод от вала авиадвигателя наиболее надежен и экономичен, но может быть использован только для насосов, установленных непосредственно на авиадвигателе, например насосов второй ступени подкачки топлива. Для всех остальных топливных насосов применяются различные приводы: электрические, гидромоторные и пневмотурбоприводы.

Топливные насосы с приводом от электродвигателя .

Широкое распространение получили внутрибаковые электроприводные центробежные насосы (ЭЦН) (рис.5.10). Основным преимуществом этих насосов является возможность их размещения внутри бака с использованием топлива для охлаждения электродвигателя.

Надежность и ресурс работы внутрибаковых ЭЦН во многом зависит от степени герметичности и, следовательно, от совершенства конструкции уплотнений вращающихся деталей. Охлаждение уплотнительной манжеты осуществляется топливом, просачивающимся между манжетой и валом насоса. Просачивающееся топливо, попадая на центробежный отражатель 4, закрепленный на валу, отбрасывается к дренажному каналу 10, к которому подсоединяется трубка, свободный конец которой выводится за борт самолета в область пониженного давления.

Насосы с приводом от электродвигателей имеют достаточно высокую надежность. В подкачивающих и перекачивающих топливных насосах на случай выхода из строя привода подача топлива обеспечивается самотеком (благодаря подсосу последующей насосной ступенью) по внутренним каналам крыльчатки.

В качестве привода центробежных насосов наибольшее распространение получили электродвигатели постоянного тока со смешанным возбуждением и трехфазные асинхронные двигатели переменного тока. Необходимо отметить, что ресурс электропривода постоянного тока определяется надежностью щеточно-коллекторного узла.

Большим преимуществом электродвигателей переменного тока благодаря отсутствию коллектора и щеток является безотказность в работе в сильно разряженной атмосфере с пониженной влажностью (большие высоты). Недостатками электродвигателя переменного тока являются строго регламентированные частоты вращения и меньший, чем у двигателей постоянного тока, пусковой момент, что в некоторых случаях ограничивает их применение.

Топливные насосы с пневмотурбоприводом. Потребная мощность привода насосных агрегатов в некоторых случаях может превышать (7... 10) кВт.

Пневмотурбопривод обладает небольшой массой и габаритными размерами при больших мощностях, высокой надежностью и отсутствием влияния привода на тепловой баланс топлива. Этим объясняется широкое распространение такого типа привода на сверхзвуковых самолетах с высокими температурами топлива на входе в двигатель.

Применение насосов с приводом от воздушной турбины позволяет уменьшить мощность агрегатов, установленных непосредственно на двигателе. При этом уменьшается мидель силовой установки и ее масса.

Струйные насосы. На самолетах с ГТД при наличии на борту высоконапорного топлива из линии перепуска основных и форсажных насосов двигателя струйные насосы благодаря простоте их конструкции, удобству в эксплуатации, надежности в работе и практически неограниченному ресурсу получают все большее распространение.

Принципиальная схема установки и питания струйного насоса I ступени подкачки топлива показана на рис.5.11. В такой схеме топливо из расходного бака поступает в струйный насос и далее подается к центробежному насосу второй ступени подкачки. Высоконапорное топливо в струйное сопло насоса поступает по трубопроводу 6 из контура постоянного перепуска насоса-регулятора ТРД. Электроприводной насос, размещенный в топливном баке, подключен трубопроводом 7 к магистрали между струйным насосом и насосом П ступени подкачки и обеспечивает подачу топлива на режимах приемистости двигателя.

Возможны схемы питания струйных перекачивающих насосов за счет резервной мощности подкачивающих насосов I ступени, установленных в расходном баке, поскольку их полная производительность используется лишь в течение короткого времени на режиме набора самолетом высоты.

На рис. 5.12. приведены данные КПД эжектора для различных значений, коэффициента смешения q см и различных коэффициентов размерных соотношений m. Как видно из этих графиков, максимально возможный КПД струйного насоса составляет 27 % при q 0 = 2,25 и m = 7.75.

Значения КПД струйного насоса (25...27) % могут быть получены только при постоянных значениях коэффициента смешения q c м и коэффициента размерных соотношений m , что может быть реализовано в некоторых случаях только для перекачивающих насосов. Получить высокие значения КПД для струйных насосов I ступени подкачки, для которых характерны переменные значения коэффициента смешения q см , можно только при применении специальных систем регулирования соотношения размеров сечения сопла и смесительного трубопровода (при переменном значении коэффициента m ).

5.8. КАВИТАЦИЯ

Кавитация (от латинского cavitas – пустота) произвольный переход жидкой фазы топлива в парообразную, когда статическое давление в жидкости сравнивается с давлением насыщенных паров.

В магистралях авиационных силовых установок кавитация может возникнуть в связи с уменьшением внешнего давления при увеличении высоты полета. В начальной стадии паровая фаза представлена мелкими пузырьками; затем происходит укрупнение пузырьков, которые в горизонтальной трубе движутся в верхней части сечения и, наконец, возможно разделение паровой и жидкой фаз и разрыв струи.

Наибольшее давление паров, находящихся над жидкостью, которое устанавливается при выделении пара в закрытом сосуде при данной температуре, называется давлением насыщенных паров (p t). Для однокомпонентной жидкости величина p t зависит только от температуры и физических свойств данной жидкости и не зависит от объемного соотношения паровой и жидкой фаз, для многокомпонентной жидкости - не только от температуры, но и от соотношения паровой и жидкой фаз (с уменьшением объема, занятой паровой фазой, давление насыщенных паров вырастает). При испытаниях авиационных топлив в лабораториях принято стандартное отношение паровой и жидкой фаз, равное 4/1. . На графиках рис. 5.13 даны значения р t для различных топлив.

С ростом температуры давление насыщенных паров одно- и многокомпонентных жидкостей увеличивается, но у разных жидкостей в разной степени. Для характеристики давления насыщенных паров жидкости одним числом, условно принята температура 37,8°С = 100°F, при которой давление называют давлением по Рейду и обозначается p Rid . Эта величина является физической характеристикой конкретного топлива и находится по справочным данным.

С увеличением высоты полета уменьшающееся атмосферное давление приводит к падению давления в баках и топливных магистралях, при этом в надтопливное пространство выделяется большее количество воздуха и газовых включений, которые уносят с собой пары топлива. Если внешнее давление выше давления насыщенных паров топлива, то испарение топлива с поверхности несущественно влияет на размеры и интенсивность выделения пузырьков воздуха; если внешнее давление ниже давления насыщенных паров топлива, то начинается внутреннее испарение (кипение) топлива, которое начинается тем раньше, чем выше давление насыщенных паров топлива.

В начальной стадии небольшое снижение давления приводит к выделению растворенного в топливе воздуха, который появляется в потоке топлива в виде мелких пузырьков, приблизительно равномерно распределенных по объему движущейся жидкости (рис. 5.13а, а ).

При дальнейшем снижении давления происходит выделение из жидкости паров легкокипящих фракций топлива. Пузырьки, в основном, состоят из паров топлив, а поток жидкости становится двухфазным; с последующим укрупнением пузырьков. В горизонтальной трубе они движутся преимущественно в верхней части сечения (рис. 5.13а, б ). Наконец, возможны случаи полного разделения паровой и жидкой фаз и движение их осуществляется самостоятельными потоками (рис. 5.13а, в ).

При глубоком снижении давления вся жидкость переходит в парообразное состояние, что приводит к нарушению сплошности потока и возникновению паровых “пробок”. Это вызывает прекращение подачи жидкости (рис. 5.13а, г ).

Отрицательные последствия заключаются в снижении пропускной способности магистрали (вплоть до полного срыва подачи), возникновении колебательных процессов течения топлива и кавитационного разрушения элементов топливной системы.

Колебания расхода вызвано тем, что паровая пробка, попав в крыльчатку насоса, практически полностью прекращает его производительность. Это приводит к снижению скорости потока и росту статической составляющей давления, превышающего упругость паров топлива. Это вызывает их конденсацию, жидкость становится однофазной, подача топлива восстанавливается и процесс повторяется.

Кавитационное разрушение поверхностей объясняется следующим. В процессе турбулентного течения топлива, имеющиеся паровые пузырьки оказываются на поверхности стенки в пограничном слое, где статическое давление превышает упругость пара. В результате конденсации пузырька в месте контакта создается местный гидроудар, приводящий к удалению поверхностной защитной окисной пленки. Со временем этот участок вновь окисляется и процесс повторяется снова. Таким образом, поверхность подвержена эррозионно-коррозонному разрушению.

5.9. КАВИТАЦИОННАЯ ХАРАКТЕРИСТИКА ЦЕНТРОБЕЖНЫХ НАСОСОВ

Кавитационной характеристикой центробежного насоса (рис.5.14) называется зависимость действительной производительности Q д в зависимости от давления на его входе P вх . Кавитационные явления чаще всего возникают на входе в насосы.

Кавитационные характеристики, определяются опытным путем и снимаются при постоянной частоте вращения крыльчатки насоса и постоянным перепадом давления на его выходе и входе ∆Р нас =Рвых. - Р вх =const. Эти характеристики приводятся для конкретного топлива и эксплуатационной температуры.

Кавитационные явления чаще всего возникают на входе в насосы. Кавитационные свойства насоса определяются кавитационными характеристиками, которые определяются испытаниями и устанавливают зависимость между давлением на входе и подачей насоса (рис. 5.14). Эта характеристика приводится для данной жидкости при некоторой постоянной значениях частоте вращения

Рис.5.14 Кавитационная (высотная характеристика центробежного насоса)

вала насоса и температуры. Для определения подачи насоса при испытаниях поддерживают постоянный перепад давления и наоборот, для определения перепада давления, создаваемого насосом, поддерживают постоянную подачу.

Расчет топливной системы на высотность заключается в определении условий бескавитационной работы топливной системы. Основная величина, определяющая нормальную работу топливной системы, давление. на входе в топливный насос р вх , которое, во избежание появления кавитации, должно превышать упругость паров топлива р t на некоторую величину.

Потребное давление на входе в насос р вх потр однозначно определяется по имеющейся кавитационной характеристике при заданном минимально допустимом расходе топлива Q min .

При отсутствии кавитационной характеристики р вх потр определяется расчетным путем:

р вх ≥ р t + Δ р кав . (5.4)

Здесь Δ р кав - кавитационной запас давления, превышающий упругость паров топлива, может быть определен двумя различными способами – расчетным и использованием опытных данных.

Расчетный вариант оценивается по формуле С.С. Руднева:

Δ р кав =ρg 10, (5.5)

где Q - подача насоса, м 3 /с;

n – частота вращения рабочего колеса, об/мин;

с – коэффициент кавитации: для насосов с плохими кавитационными свойствами с =600…700, обычных насосов с =800…1000; и насосов с хорошими свойствами с =1000…1500.

Это условие должно выполняться на всех режимах полета самолета при всех перегрузках и температурах топлива. Величина потребного кавитационного запаса для различных насосов меняется в очень широких пределах от сотых долей атмосферы до нескольких атмосфер, в зависимости от типа насоса, режима его работы, быстроходности, и т. д.

Даже для одного и того же насоса, в зависимости от расхода, условий работы и предъявляемых к нему требований, потребный кавитационный запас может существенно изменяться.

Сточки зрения требований к производительности перекачивающего насоса и создаваемому им давлению, его работа даже в зоне заметно развитой кавитации может оказаться удовлетворительной. Однако, пониженное давление на всасывании для насосов подкачки недопустимо, так как при этом возникают резкие колебания давления в системе, приводящие к нарушению работы автоматики и т.д. Кроме того, резкие колебания давления могут вызвать эрозионный износ насосов двигателя и, в частности, плунжерных пар.

В ряде случаев потребный кавитационный запас должен исключать даже малые признаки кавитации, не оказывающие влияния на протекание основных характеристик насоса.

Насосы перекачки могут работать с довольно малыми давлениями на всасывании, то есть в области существенной кавитации на входе, при условии, что они должны обеспечивать потребный расход топлива.

Величина наддува топливных баков большей частью определяется требованиями к основным насосам подкачки, установленным в расходных баках, хотя по условиям работы насосов перекачки наддув баков в большинстве случаев мог бы быть меньше.

Потребные кавитационные запасы давления Dр кав для различных насосов в большинстве случаев определяются экспериментальным путем.

Ниже приводятся осредненные статистические (опытные) данные по кавитационным запасам давления для насосов топливной системы.

Для насосов невысокого давления (100…150) кПа и умеренной производительности (баковые насосы подкачки и перекачки) Dр кав =(10…25) кПа. Для ДЦН (промежуточные насосы подкачки, устанавливаемые на двигателе) -Dр кав =(60…80) кПа.

Для насосов высокого давления (насосы-регуляторы) - Dр кав = (150…250) кПа.

Чтобы уменьшить выделение воздуха из топлива для самолетов с большой скороподъемностью увеличивают кавитационный запас (запас по давлению в баках) примерно, на (70 … 100) мм рт. ст.

Для улучшения кавитационных характеристик насосов подкачки (и других центробежных насосов) перед рабочим колесом (крыльчаткой) устанавливают внутренний насос подкачки (преднасос) в виде осевой или шнековой ступени (рис. 5.6).

Преднасос, благодаря низкому давлению, создаваемому им и пониженным нагрузкам на лопасти не требует таких больших давлений на всасывании как основные, более нагруженные ступени. Вместе с тем лопастное колесо преднасоса создает за собой закрутку топлива, чем обеспечивает понижение относительной скорости входа жидкости в центробежную ступень, которая в основном определяет местное разрежение на входе в колесо и тем самым потребный кавитационный запас.

Установленная в качестве преднасоса сепарирующая крыльчатка пропускает расход больше, чем основная центробежная ступень, и вместе с избытком топлива, отводимым между ступенями обратно в бак, удаляются и пузырьки воздуха и газа, выделившегося из топлива. Все это улучшает кавитационные характеристики насоса.

В этих случаях насосы требуют совершенно ничтожных кавитационных запасов, вплоть до удовлетворительной работы насоса подкачки на кипящей и, особенно, воздуховыделяющей жидкости.

Все эти качества сепарирующих крыльчаток проявляются в полной степени только в тех случаях, когда излишек производительности преднасоса вместе с захваченными им пузырями пара и воздуха может свободно отсепарироваться в полость бака. Если же этой возможности нет или она затруднена, то часто установка такой осевой ступени оказывается даже вредной.

5.10. ОСНОВЫ РАСЧЕТА ТОПЛИВНОЙ СИСТЕМЫ

Расчет топливной системы сводится к следующему:

Определение потребной емкости баков;

Определение необходимых объемов воздушных подушек, особенно для закрытых систем;

Расчеты, связанные с порядком выработки топлива из баков и обеспечением центровки самолета;

Расчет топливной системы на высотность.

Высотностью топливной системы называется предельная высота полета, до которой обеспечивается бесперебойная подача топлива к основным насосам двигателя с необходимым давлением и требуемым расходом.

Поскольку с первого по третий пункты полностью решаются в процессе предварительных эскизных компоновок самолета, далее эти вопросы не рассматриваются и считается, что в расчете топливной системы заданными являются емкости баков, их конфигурация и размещение на самолете, а также потребный порядок выработки топлива.

Требования при расчете высотности топливной системы

Технические условия должны предусматривать самые невыгодные из возможных режимов условия эксплуатации самолета:

Принципиальную и монтажную схемы топливной системы с их геометрическими и гидравлическими характеристиками;

Максимальные расходы топлива Q ;

Наиболее высокие (а иногда самые низкие) расчетные температурные условия топлива t (РаТУ);

Максимальные высоты полета H рас;

Наибольшую скороподъемность;

Максимальные перегрузки n x , n y и n z .

Напорные и кавитационные характеристики насосов ТС самолета.

Дополнительно должны быть известны:

физические характеристики топлива – плотность r , коэфф. кинематической вязкости n , давление насыщенных паров топлива при эксплуатационной температуре Р t .

Рассчитываются участки магистрали, находящиеся в наименее благоприятных условиях подачи топлива (по длине трубопроводов и относительной высоте одного объекта над другим). Поэтому расчетная схема топливной системы должна давать представление о протяженности магистралей и взаимном расположении агрегатов. Исходя из наименее благоприятных условий, берется случай, когда топливо в баке на исходе (т. е. уровнем топлива в баке следует пренебречь).

В общем случае расчеты выполняются для ряда режимов. Необходимо проверить работу магистралей подачи топлива в наиболее тяжелых условиях работы. Таковыми являются разбег и разгон самолета до скорости отрыва, взлет и набор высоты на максимальном режиме, горизонтальный полет на высоте заданного эшелона. Перегрузки п определяются из аэродинамических расчетов. Если этих данных нет, то для самолетов гражданской авиации можно принять:

п у =(+4…-0,5); п х =±0,3; п z =0.

Зависимость объемного расхода топлива двигателем от высоты полета (рис. 5.15) указана в его характеристиках.

Необходимые режимы работы двигателей определяются аэродинамическими расчетами. Для расчета высотности ВС гражданской авиации с работающими НП1 рекомендуется принять характер изменения объемного расхода топлива по линии абв, соответствующей максимальному режиму, а для расчета высотности с неработающими НП1 - по линии абгд, где участок гд - крейсерский режим.

Расчет ТС можно подразделить на два варианта: проектировочный и проверочный.

5.10.1. Проектировочный расчет высотности ТС.

Он сводится к оценке источников давления (величины наддува в топливном баке Δр б . и давления за подкачивающим насосом р нас .), которые, преодолев все гидравлические потери по тракту топливной магистрали, обеспечивали бы потребное давление на входе в основной топливный насос двигателя.

Расчет ТС базируется на уравнении Бернулли, записанного для двух сечений 1-1 и 11-11, высота уровней соответствующих сечений y 1-1 и y 11-11 оценивается относительно произвольно взятой базовой плоскости 0-0. Все обозначения даны на расчетной схеме рис.5.16.

р 1 +y 1 ρg+ =p 11 +y 11 ρg+ +Δp, (5.6)

где p 1 - давление в надтопливном пространстве;

V 1 - вертикальная скорость перемещения жидкости в баке;

V 11 - скорость движения топлива на выходе из топливной системы;

Δp - потери давления по тракту подкачивающей магистрали.

Здесь можно принять V 1 , исходя из FVρ= сonst , то ,а F 1 >>F 11 и V 1 <.

Тогда (5.6) можно записать:

p 1 =p 11 +(y 11 - y 1) ρg + +p трен. +p местн. +p ин. , (5.7)

где p трен. , p местн. , p ин. соответственно потери давления от трения, от преодоления местных сопротивлений и инерционные давления.

Статическое давление в сечении 1-1определяется давлением атмосферы p H , соответствующей заданной высоте полета H, и величиной наддува топливного бака Dp б . : p 1 =p H +Dp б. .

Наддув баков (Dp б.) не следует делать больше минимально необходимого, так как это вызывает неоправданное увеличение массы баков (или контейнеров - в случае мягких баков) особенно, если в конструкции присутствуют баки с более или менее плоскими стенками.

Для несущих баков наддув можно принять несколько увеличенным, так как влияние внутреннего давления на вес баков в этом случае существенно снижается. Встречаются даже случаи при очень тонкостенных баках или при передаче стенкой бака тяги двигателя, когда повышение внутреннего давления улучшает условия работы конструкции несущего бака и даже приводит к снижению его веса.

Обычно для самолетов с насосной подачей принимается Dp б max 30 кПа . В случае вытеснительной подачи - Dp б. = 80 кПа.

Давление p 11 есть ничто иное, как потребное давление на входе в насос (ДЦН или основной насос двигателя) p вх потр. и может быть определено по выражению (5.4) или по имеющимся кавитационным характеристикам.

Выражение (5.7) запишется в следующем виде, если считать левую часть уравнения источниками давления, а правую - потерями:

p H +Dp б. = p вх потр. ± yrg + p трен. + p мест. +р ин. + , (5.8).

Гидростатическое давление . В случае горизонтального полета гидростатическое давление yrg определяется высотой y (см. рис. 5.16). Знак «+» берется в случае принижения уровня топлива в баке относительно выходного трубопровода ТС и в противном случае – знак «-»

В полете с некоторым углом j к горизонту y находится как превышение зеркала топлива в расходном баке над окончанием топливной системы самолета и запишется в следующем виде:

y = -h топл ± , (5.9).

где h топл -превышение высоты топлива над заборным патрубком бака;

l x и l y –проекции длин трубопроводов (при сложной пространственной схеме) на соответствующие координатные оси самолета.

Знаки перед суммой определяются по следующему правилу: если топливо в трубопроводах течет по направлению земного тяготения, то берется знак «-» и в противном случае – знак «+»

Гидравлические потери. Путевые потери давления p трен. вызываются трением жидкости о стенки трубопровода и выражается:

p трен. = , (5.10)

где l – длина трубопровода,

d - гидравлический диаметр диаметр трубопровода.

Здесь же для турбулентного течения коэфф. трения , число Рейнольдса Re=Vd/ν , где ν – коэфф. кинематической вязкости топлива при эксплуатационной температуре топлива.

В проектировочных расчетах V принимается равной (1…2) м/с при движении топлива самотеком и (4…7) м/с при насосной подаче. Потребный диаметр d при заданной прокачке топлива Q определится:

d= , (5.11)

Полученное значение d округляется до стандартного значения, далее оценивается p трен (формула 5.10) по истинным величинам V n

В направлении осей х и z перегрузки обычно невелики, но зато длины трубопроводов могут быть большими. Как правило, все же наиболее существенной оказывается перегрузка в направлении оси у, доходящая в отдельных случаях до расчетных значений п у = (10… 12)

Для расчета необходимо брать предельно неблагоприятный случай, когда все давления относятся к категории потерь.

Теперь, когда определены все составляющие потерь, из (5.8) можно найти величину источника давления:

Dp б. = p вх. потр. ± yrg + p трен. + p мест. +р ин. + - p H . (5.14)

Если полученное значение Dp б > 30 кПа, то в систему необходимо включить подкачивающий насос с давлением на выходе р нас.

В этом случае выражение (5.14) примет вид:

р нас. = p вх. потр. ± yrg +(p трен.) 1 +(p мест.) 1 + +() 1 -(p H +Dp б) . (5/15)

В (5.15) значения (p трен.) 1, (p мест.) 1 и () 1 определить при новых значениях скоростей, соответствующих насосной подаче топлива [принимается V= (4…7) м/с]. Полученное значение р нас. соответствует одному расчетному режиму Работы силовой установки.

5.10.2.Проверочный расчет высотности ТС (полет на потолке) .

Полет на потолке предполагает равномерный и горизонтальный полет. В этом случае инерционные потери давления р ин. равны нулю.

Особым случаем расчета топливной системы является проверочный расчет ее высотности на высотах существенно выше статического потолка самолета в связи с тем, что для скоростных самолетов с высокой энерговооруженностью динамический потолок может значительно отличаться от статического.

Для некоторых (например, опытных) самолетов остановка двигателей на предельных высотах в ряде случаев допустима, поскольку после выполнения задания самолет может снизиться до умеренных высот, на которых система запуска позволяет произвести надежный запуск двигателей и продолжать полет. Для боевых самолетов необходимость существенного снижения высоты полета для запуска двигателей может полностью уничтожить все преимущества, получаемые за счет превышения статического потолка путем использования накопленной кинетиче

Часть 10. Авиационные динамические насосы (наиболее часто применяются центробежные, но также используются осевые, вихревые и струйные насосы) используются главным образом для перекачивания авиационного топлива. Кроме топливных, на самолетах (пассажирских) используются насосы систем жизнеобеспечения (для чистой воды, санитарные и пр.), а также насосы систем термостабилизации для охлаждения (подогрева) радиоэлектронного оборудования (главным образом радаров и их электроники). Что касается топливных насосов, то в каждом баке самолета (а их может быть более 10) должен быть как минимум один топливный насос, топливные насосы также установлены на двигателях. Таким образом, число топливных насосов разных типоразмеров на самолете может превышать 30. . 40 штук 5. . 10 разных типов Лекции по Ти. ЭУ 1

Основные особенности авиационных насосов: 1. Жесткие ограничения по весу и габаритам (и вытекающая отсюда необходимость повышения частот вращения ротора) 2. Большое разнообразие конструкций из-за сложной конфигурации баков и трубопроводов в самолете 3. Удобство замены (модульная конструкция) 4. Высокая надежность в процессе работы 5. Большое разнообразие систем привода насосов (двигатели переменного тока 400 Гц, постоянного тока 27 и 110 В, гидропривод, пневмопривод и привод непосредственно от двигателя) 6. Необходимость резервирования насосов 7. Возможность работы на жидкостях с большим количеством растворенного воздуха (авиационное топливо может растворять большое количество воздуха) и в сложных кавитационных условиях (вследствие высоких частот вращения и возможных больших температур топлива, особенно в крыльевых баках) 8. Пожарная безопасность (топливо огнеопасно) 9. Большой диапазон режимов работы Лекции по Ти. ЭУ 2

Основные типы топливных насосов – это баковые (внебаковые и кессонные) насосы 1 ступени (как правило, с электроприводом ЭЦН), двигательные насосы с приводом от двигателя (2 ступени) – ДЦН и топливные насосы высокого давления (до 100 кгс/см 2), установленные на двигателе (насосырегуляторы и форсажные насосы). При этом баковые насосы применяются и для перекачивания топлива между баками (например, из внешних баков в расходный или между крыльевыми для уравновешивания самолета – балансировочные насосы БЦН) Лекции по Ти. ЭУ 3

Проблема постоянного снабжения топливом двигателей во всех режимах полета Самолет может совершать самые разнообразные маневры в процессе полета. Особенно это касается высокоманевренных военных самолетов. При этом система подачи топлива должна обеспечивать снабжение двигателей горючим во всех возможных положениях самолета и при разных перегрузках (в том числе отрицательных). Для этого используются различные схемы забора топлива из баков и/или топливные аккумуляторы, обеспечивающие кратковременную подачу топлива в баки при маневре. Лекции по Ти. ЭУ 9

Другой проблемой является работа насоса на жидкостях с высоким газосодержанием (с выделением газа на входе в насос) и при низких значениях кавитационного запаса на входе. Несмотря на наддув баков от компрессора двигателя, за счет нагрева топлива в баках, изменения положения зеркала топлива в баках и отрицательных перегрузок давление на входе в насос может падать почти до давления насыщенного пара для данной жидкости. Кроме того, кавитационные качества сильно зависят от частоты вращения вала насоса, которая для данных насосов высока. Проблема может быть решена следующими основными путями: 1. Снижение содержания газа на входе в лопастное колесо с помощью газосепараторов 2. Применение предвключенных струйных насосов для улучшения работы на газожидкостной смеси и повышения всасывающей способности 3. Использование предвключенных шнеков Лекции по Ти. ЭУ 12

Выбор типа привода для авиационного ЦБН должен производиться исходя из следующих требований: 1. Высокие частоты вращения вала насосов 2. Высокая надежность привода и его компактность, малый вес 3. На самолете обычно есть 2 вида электропитания – постоянный ток (обычно 27 В) и переменный (как правило 100200 В 400 Гц) 4. Насосы должны работать и в аварийных ситуациях, в том числе при сбое электропитания (не все, аварийные) 5. Желательно наличие жесткой характеристики привода для прогнозируемой работы насоса во всех режимах 6. Желательно – возможность управления параметрами двигателя и система его диагностики (реализуется, например, в современных двигателях с электронной коммутацией) 7. Очень важная задача – охлаждение двигателя в замкнутом объеме (обычно перекачиваемой жидкостью) для насосов внутрибакового исполнения Лекции по Ти. ЭУ 17

Исходя из вышеизложенного, для авиационных ЦБН применяются следующие типы приводов: 1. Электродвигатели постоянного тока с частотами вращения как правило от 5000 до 24000 об/мин и мощностью от 25 Вт до 15 КВт (обычно до 1 КВт) 2. Электродвигатели переменного тока (асинхронные, 400 Гц) на те же параметры 3. Пневмопривод (воздушная турбина) с отбором сжатого воздуха от компрессора двигателя 4. Гидропривод (гидротурбина) с питанием рабочей жидкостью (топливом) от насоса, установленного на двигателе 5. Аварийные приводы, например, выкидные воздушные турбины (обычно используются не для ЦБН, а для аварийных генераторов) 6. Наиболее современные – синхронные вентильные двигатели с ротором на постоянных магнитах Лекции по Ти. ЭУ 19

Возможные направления развития авиационных ЦБН 1. Применение герметичных синхронных вентильных электродвигателей с электронной коммутацией со встроенным регулированием по частоте вращения и датчиками состояния агрегата (включая датчики вибродиагностики) 2. Повышение частот вращения роторов насосов для уменьшения их веса и габаритов 3. Более широкое использование в конструкции неметаллических материалов, в т. ч. и в корпусных деталях 4. Использование подшипников скольжения с высокой износостойкостью для повышения ресурса работы Лекции по Ти. ЭУ 39

Топливо на самолете находится в баках, которые могут быть встроенные , жесткие или гибкие .

a) Встроенные баки – находятся внутри крыла и, в зависимости от типа самолета, в кессоне центроплана и горизонтального стабилизатора. Баки устанавливаются и герметизируются при производстве самолета для хранения большого количества топлива. Преимуществом таких баков является небольшой прирост веса самолета, т.к. конструкция бака сформирована в уже имеющейся конструкции. На всех современных пассажирских самолетах устанавливаются баки данного типа.

b) Жесткие баки – герметичные металлические контейнеры, остановленные на крыле или фюзеляже самолета. Они просты в исполнении, но добавляют вес самолету и требуют крепежную конструкцию. Наиболее распространены среди легких самолетов. Баки данного типа могут устанавливаться снаружи, например, на законцовке крыла, и иметь металлическую или композитную конструкцию.

c) Гибкие баки – герметичные баки, изготовленные из прорезиненной ткани, иногда называются топливными баллонами или мягкими баками. Для баков данного типа требуется конструкция для крепления и поддержки внутри самолета. Они обычно устанавливаются внутри крыла или фюзеляжа, наиболее популярны для военных самолетов, т.к. их можно эффективно герметизировать самостоятельно в случае повреждения в бою.

Внутри баков устанавливаются перегородки для минимизации больших внутренних сил, создаваемых при колебаниях топлива во время маневров самолета, ускорения, замедления или, например, бокового скольжения. У некоторых больших самолетов могут быть установлены дроссельные запорные клапаны, которые пропускают топливо на борт и не пропускают обратно в крыло во время маневров. Топливные баки также содержат вентиляционные клапаны, клапаны дренажа воды, штуцеры заправки и крышки заливной горловины, систему калибровки. У больших самолетов в баках устанавливаются подкачивающие насосы, поплавковые датчики высокого и низкого уровня, клапаны централизованной заправки и фильтры.

Топливная система самолета разработана для хранения и доставки топлива в топливную систему двигателя. Она должна быть способна доставить больше топлива, чем может потреблять двигатель в самой критической фазе полета, чтобы двигатель никогда не испытывал топливного голодания.

На рисунке ниже приведена топливная система легкого однодвигательного самолета. Жесткие топливные баки установлены в крыле и заправляются топливом с верхней части крыла (открытая линия через фильтр верхней части бака). Из баков топливо подается с помощью механического или электрического насоса через селекторный клапан топливного бака и фильтр перед подачей карбюратор. Заливка двигателя производится с помощью подкачивающего насоса, который берет топливо из корпуса фильтра и подает во входной коллектор. Топливная система позволяет отслеживать вместимость и давление топлива, а также дренаж топлива с удалением воды перед полетом.

Рис. 18.1. Топливная система легкого однодвигательного самолета

Многодвигательные самолеты имеют более сложные топливные системы с дополнительными требованиями к высоте и конфигурации двигателя. Топливные баки встроенные и неизменяемые, расположены в крыле. У большинства современных самолетов есть центральный бак – бак в кессоне центроплана между полуплоскостями крыла. Существуют самолеты с топливными системами, имеющими баки на хвостовом оперении (киле или стабилизаторе), которые вместе с увеличением топливной емкости могут применяться для изменения положения ЦТ самолета.

Система будет включать следующие компоненты:

1. Система суфлирования (вентиляции и дренажа) – может содержать вентиляционные клапаны и уравнительный дренажный бак. Позволяет выравнивать давление воздуха в баке над топливом с наружным давлением, а также может пропускать воздух скоростного напора для частичного наддува баков в полете, что способствует формированию потока топлива и помогает уменьшить кипение топлива на высоте. Любое топливо, попадающее в систему суфлирования, скапливается в уравнительном дренажном баке и возвращается обратно в основные баки. Вентиляционное пространство в каждом топливном баке согласно требованиям JAR 23 и JAR 25 составляет 2% от объема бака.

2. Фильтры (экраны) – используются для предотвращения попадания любых частиц из бака в подкачивающие насосы.

3. Подкачивающие насосы – обычно устанавливаются попарно в каждом баке для подачи топлива из бака в двигатель. Эти насосы необходимы высотным самолетам для предотвращения кавитации в насосе с приводом от двигателя. Подкачивающие насосы обычно центробежного типа с приводом от индукционных моторов переменного тока, создают низкое давление (20-40 psi) и высокий расход. В случае двойного отказа подкачивающих насосов в одном главном баке, максимальная высота полета самолета будет ограничена согласно Перечню Минимального Исправного Оборудования (MEL) для предотвращения топливного голодания.

4. Коллектор (распределитель) – подкачивающие насосы устанавливаются в коллектор или распределитель, который всегда содержит расчетное количество топлива (обычно 500 кг), чтобы насосы были постоянно погружены в топливо для предотвращения кавитации насосов в связи с изменением пространственного положения самолета, когда они могут остаться непокрытыми топливом. Коллектор может иметь средства, обеспечивающие замену насосов без слива всего топлива из бака.

5. Клапаны перекрестной подачи и отсечки – обеспечивают подачу топлива из любого бака в любой двигатель и изоляцию в случае отказа или аварии.

6. Поплавковые выключатели высокого и низкого уровня или датчики уровня – выключатели высокого уровня топлива используются для автоматического закрытия клапана заправки, когда бак наполнен во время дозаправки, а выключатели низкого уровня используются для поддержания требуемого минимума топлива в главных баках во время аварийного сброса или слива топлива.

7. Слив топлива – как на легком самолете, любой бак имеет штуцер слива в самой нижней точке для слива воды из бака.

8. Перегородки – устанавливаются в баках для гашения резких колебаний топлива (плескания или разбрызгивания) во время маневрирования.

9. Клапан стравливания давления – на случай избыточного наддува топливного бака из-за отказа для предотвращения повреждений конструкции может быть установлен перепускной клапан.

На следующем рисунке представлена типичная схема системы двухдвигательного реактивного самолета с органами управления и приборами контроля. Заметим, что крыльевые баки разбиты на два элемента: внешнюю и внутреннюю секцию, которые иногда объединяются для сохранения во внешней секции определенного количества топлива, пока уровень топлива во внутренней секции не достигнет определенного значения. Сохранение топлива во внешней секции помогает снизить изгибающую нагрузку на крыло и избегать флаттера.

Рис. 18.2. Схема топливной системы

Нормальная последовательность использования топлива после взлета будет заключаться в первоначальном расходовании топлива из центрального бака, а затем топлива из крыльевых баков. Эта последовательность позволяет снизить изгибающую нагрузку на крыло. Когда подкачивающие насосы более не могут выкачивать топливо из центрального бака, остаток топлива может быть перемещен в бак №1 по линии откачки центрального бака.

Клапан перекрестной подачи позволяет питать оба двигателя с одной стороны или один двигатель с обеих сторон. Впускные клапаны (клапаны подсоса) в баках позволяют питать двигатель с помощью сил гравитации или подсоса от насоса с приводом от двигателя в случае отказа обоих подкачивающих насосов в одном баке.

На контрольной панели показаны переключатели для каждого насоса вместе со световой сигнализацией низкого давления для предупреждения об отказе насоса или низком уровне топлива. Для клапана перекрестной подачи также существует переключатель и индикатор. В баке №1 имеется температурный датчик, передающий сигнал температуры топлива в баке на индикатор контрольной панели.

Клапан отсечки топлива закрывается при работе пожарного рычага соответствующего двигателя, у некоторых самолетов он также управляется переключателем топлива во время процедуры нормального запуска или останова.

Топливо для ВСУ подается из бака №1 при помощи перепускного клапана, если нет работающих подкачивающих насосов, или подача может осуществляться из любого бака при включении подкачивающего насоса соответствующего бака. Отсечной клапан ВСУ обычно управляется автоматической последовательностью запуска или останова.

Дисбаланс топлива в полете между баками №1 и №2 можно скорректировать с помощью переключения подкачивающих насосов и клапана перекрестной подачи (открыть перекрестный клапан и отключить насосы в баке с меньшим количеством топлива до достижения правильного баланса при питании обоих двигателей из бака с большим остатком топлива). При достижении правильного баланса необходимо включить подкачивающие насосы, которые были предварительно отключены, и перекрыть перекрестный клапан. Это восстановит конфигурацию «бак – двигатель» (бак №1 питает двигатель №1, бак №2 питает двигатель №2).

На контрольной панели имеются индикаторы для открытого положения перепускного клапана фильтра НД (блокировка фильтра). Это фильтр низкого давления в топливной системе двигателя, установленный за подогревателем топлива.

Топливная система предназначена для размещения топлива на самолете и подачи его к двигателям и вспомогательной силовой установке во всех возможных условиях эксплуатации самолета.

Назначение топливной системы -- обеспечить подачу топлива к двигателям на всех возможных для данного самолета режимах полета (по высоте, скорости и перегрузкам) в нужном количестве и с необходимым давлением. Кроме того, с помощью перекачки топлива (вперед--назад) можно изменять центровку самолета.

Топливная система BOEING 767 включает в себя; три топливных бака, два расширительных бака, систему вентиляции, систему питания топливом двигателей и ВСУ, систему заправки и слива, систему аварийного сброса топлива, и систему индикации количества топлива.

Топливные баки.

Топливные баки расположены между 3 и 31 нервюрами, обоих крыльев. Баки кессонной конструкции. Сухие полости расположены в передней кромке крыла над пилоном, для предотвращения утечки топлива. Нервюры 5 и 18 запечатаны, и имеют клапана в нижней части перегородки. Эти перегородки необходимы для равномерного распределения топлива в топливных баках и предотвращения скопления паров.

Рис2.1..

Основные баки могут обогреваться с помощью обогрева предкрылков. Топливные баки имеют 59 овальных отверстий, для доступа, расположенные в нижней части крыла. В нижней части баков имеются дренажные клапана, для слива отстоя.


Рис. 2.2.

Центральный бак расположен в центроплане, между нервюрами 3. Центральный бак разделен на три части левую, правую, и центральную. Как и в крыльевых баках, центральный бак тоже имеет сухой отсек, расположенный в передней части бака. Три секции соединены между собой патрубками, для перетекания жидкости, и паров. Центральный бак имеет два подкачивающих насоса, установленных в левой и правой секции. Клапана для слива отстоя установлены к нижней части каждого бака.

Система питания обеспечивает подвод топлива под давлением к двигателям и вспомогательной силовой установки. Система питания разделяется на две подсистемы. Подсистемы работают независимо друг от друга. Имеют клапана закольцовывания, для равномерной выработки топлива из баков и перекачки. Обычно каждый двигатель питается от своего бака. Если клапан закольцовывания открыт, то каждый двигатель будет питаться из любого топливного бака. Запорный клапан контролирует поступление топлива к двигателю.


Рис.2.3.

Давление в топливной системе обеспечивается двумя подкачивающими электрическими насосами 115В. 400Гц. 3фазы установленными в одном корпусе. Расположены насосы по одному в каждом крыльевом баке. Два подкачивающих насоса 115В. 400Гц. 3 фазы, установлены в центральном баке, левой и правой секции. Производительность насоса 13 600 килограмм в час, минимальное давление 15psi. Подкачивающие насосы центрального бака питают соответственно левую и правую подсистемы, и создают давление выше чем давление подкачивающих насосов крыльевых баков. Что позволяют в первую очередь выработать топливо центрального бака.

Автоматические струйные насосы, установленные по два в каждом баке, предназначенные для сбора из нижней части баков различные загрязнения и воду. Работают за счет разрежения, создаваемого подкачивающими насосами.

Система питания Вспомогательной силовой установки.

В левой части центрального бака расположены компоненты системы питания Вспомогательной силовой установки. За исключением кожуха патрубка и приемника.

К компонентам относятся;

Подкачивающий насос постоянного тока 28В.

Запорный клапан,

Трубопровод,

Изоляционный клапан,

Кожух трубопровода.

Подкачивающий насос состоит из корпуса, приемника, электродвигателя, датчика давления, клапан давления, температурного клапана, разрядный клапан, обратный клапан,

Обратный клапан предотвращает поступление топлива в обратном направлении. Клапан давления регулирует давление насоса. Топлива проходя через насос, охлаждает его и смазывает подвижные детали. Электродвигатель расположен с наружной стороны бака. Двигатель вращается с частотой 6600 оборотов в минуту, и создает давление 18 psi. Производительность 3.1 галлона в минуту. Температурный предохранитель предотвращает перегрев электродвигателя. Предохранитель отключает насос при превышении температуры более 3508F ±148F (1778C ±88C). Изоляционный клапан работает от постоянного тока 28В. Установлен в центральной линии подачи топлива. Предотвращает от разрушения элементы топливной системы вспомогательной установки.

Рис. 2.4. Система питания ВСУ

Рекомендуем почитать

Наверх