Исследование точности станков с чпу. Токарные станки высокой точности обработки Фрезерный станок с чпу точность

Поиск работы 04.11.2021
Поиск работы

На этом сложном оборудовании изготовляют всевозможные детали из металла, оргстекла, акрила или пластика, древесины. Их универсальность состоит в том, что они хорошо подходят для поперечного строгания, образования самых сложных поверхностей, в частности, криволинейных; выполняют выборки гребня, шпунта, фальцев, паза, шлицы и калевки.

Описание станка

Стандартная комплектация станка включает:

  • тяжелое и мощное основание;
  • рабочий стол;
  • , с одновременным присутствием шпиндель-вала;
  • набор нескольких инструментов для резки материалов;
  • передний дисковый тормоз.

В конструкцию станков сегодня включены многие важные устройства, обеспечивающие точность обработки и удобство для пользования. О них важно знать, чтобы выбор фрезерного станка с ЧПУ был осмысленным и правильным.

Не оставьте без внимания шпиндель!

Одно из важных качеств в работе электродвигателя вала шпинделя – способность плавно и равномерно его вращать. При комплектации подбирают подшипники высочайшего (класса точности, а цанга должна иметь повышенные допуски по биению и размеру.

Различают основные типы систем охлаждения шпинделей:

  1. Жидкостная (в её основе – циркуляция воды или тосола в замкнутом контуре). Одно из преимуществ – надёжное теплоотведение. Среди недостатков – сложная конструкция, ведь охлаждающую жидкость надо разместить в резервуаре.
  2. Воздушная (такое охлаждение состоит в нагнетании воздуха через щели-воздухозаборники в полости шпинделя). В числе плюсов системы – компактность и простота. Минус тоже есть – фильтры, особенно у техники, обрабатывающей массив дерева, надо часто менять, они загрязняются пылью.

При выборе шпинделя для станка ЧПУ, стоит обратить внимание на указанные в техническом паспорте его показатели (мощность и частота вращения при фрезеровании), зависящие от того, насколько твёрдые обрабатываются материалы. Например, у листовой фанеры требуемая мощность для обработки – 800 Вт; над массивом твёрдой древесины, лёгкими металлами – медью, латунью и алюминием, пластиком трудится более мощный станок – 1500 Вт; а камень обрабатывают при мощности 3000 – 4000 Вт.

Сейчас в оборудовании для фрезерных работ, в основном применяют импортные шпиндели:

  1. Итальянский – высококачественные, работающие с большой скоростью, при плавном вращении и малом биении, преимущественно, с воздушным охлаждением и высокой ценой.
  2. Китайский имеет сплошной корпус цилиндрической формы, который на торцах закрыт крышками, а для удерживания валов применяют подшипниковые узлы. Среди плюсов – конструкция имеет достаточный уровень жёсткости и минимальную вибрацию, нечувствительность к наличию стружки и пыли, доступность по цене. У моделей шпинделей китайского производства, к сожалению, большая вероятность брака, бывает трудно заменить подшипники. А у моделей, имеющих водяное охлаждение, наблюдается слабая антикоррозионная стойкость внутренних деталей.

Типы станков для фрезерования

Выбирая подобное оборудование, надо исходить из того, насколько оно соответствует предназначению. У россиян есть выбор:

  • высокоскоростные ЧПУ станки-автоматы, которые режут и выполняют раскрой металлов, обрабатывают детали из картона и древесины, справляются с двухслойным пластиком и акрилом, ПВХ, оргстеклом и гипсом, натуральным камнем – гранитом и мрамором;
  • модели (фрезерно-гравировальные), работающие с листами (предельный габарит 2000 х 4000 х 200 мм);
  • граверы (от 2D моделирования до 4D);
  • узкопрофильные автоматы, работающие с одним каким-то материалом – разновидностями камня, фанерой, древесиной, нержавеющей сталью или алюминием;
  • небольшие портативные модели с ЧПУ. Например, модель фрезерного станка с «Настольный 3D» служит для фрезерования печатных плат, МДФ и обрабатывает изделия предельно точно.

В линейке техники серии для профессионалов, можно отдать предпочтение вертикальным и горизонтальным обрабатывающим центрам с программным управлением; большим трех-, четырех- и пятикоординатным фрезерным ЧПУ граверам, которые производят на Тайвани.

Они считаются достаточно надежными и покупаемыми (после Германии и Японии – на третьей позиции). К тому же, их выгодно приобретать и частным лицам, и предприятиям, благодаря наличию в Москве и Туле сервисных центров, занимающихся поставкой оснастки, режущего инструмента, наладкой техники и обучением персонала.

ВНИМАНИЕ: Отличить станок с Тайваня несложно: у него цельнолитая станина (материал изготовления бразильский мелкозернистый чугун). К тому же автомат укомплектован американскими или японскими подшипниками, импортными шпинделями.

А если заказчик ищет высокоточный ювелирный станок, лучшая модель для этого – P 0403 от производителя Vector.

Мебельное оборудование

Деревообрабатывающее и мебельное производство, мастерские, изготавливающие окна, двери и фасады, не смогут функционировать без оборудования широкого функционала, – автоматов по дереву с чпу.

В последние годы стала модной мебель в стиле ретро – с изящными резными подлокотниками, ножками и другими деталями. При этом используется технология автоматизированной резки узора на фрезерном станке, на котором установлено числовое управление. Оно обеспечивает высокую точность и качество, когда выполняется сложная фрезерная обработка древесины и создаётся резной элемент.

При помощи такого оборудования, возможно наладить производство:

  • деревянных мебельных фасадов и декоративных консолей;
  • бaляcин, фигурных нoжек и прорезных элементов;
  • зaклaдных резных деталей;
  • символов, статуэток, фигурок и рамок различной формы для картин и зеркал.

Тот, кто ограничен в средствах, возможно, купит недорогой китайский стандартный гравировально-фрезерный станок с ЧПУ – СС-М1, специально для . При изготовлении фасадов, гравировке декора и барельефа – обычно много пыли. Поэтому, выбирайте ту комплектацию, где есть вакуум-аспирация для пылепоглощения. В данной модели она есть.

Какие фрезерные станки лучше? Однозначного ответа не даст никто. Но доверия всё же больше к программному рабочему оборудованию. Подход к выбору нужной техники у каждого мастера – свой.

И хорош тот фрезерный станок с ЧПУ, у которого выше точность, ниже энергопотребление, больше удобства в пользовании, надёжность в любой рабочей ситуации.

Можно сформулировать три совета правильного выбора:

  1. Уточняйте заранее у менеджеров фирм все данные о модели; материалах, с которыми работает станок. Если есть видео – просмотрите. Это поможет определиться.
  2. Проконсультируйтесь до покупки относительно функционала оборудования и круга выполняемых задач. А лучший вариант – записаться на демонстрацию работы чпу станка и не стесняться по ходу эксплуатации задавать вопросы.
  3. Когда нужная модель выбрана, будьте внимательны в момент покупки: проверьте купленное оборудование на предмет комплектации узлов. Обязательно должен быть блок программного управления станком; шнуры, имеющие разъемы соответствующей конфигурации, и диски с ПО. Обычно ПО устанавливают специалисты фирмы, продающей станок, во время его наладки.

Заключение

В основном, мы попытались помочь человеку, стоящему перед выбором. Разобрались, как выбрать фрезерный станок (вещь дорогая, и будет работать у владельца не один год – с металлом или деревом). По крайней мере, сейчас выбирать есть из чего. Хочется надеяться, что читатели воспользуются этой информацией для покупки рабочего инструмента.

Сорри, что задержался с ответом. Постараюсь возместить это полнотой описания.

1. Шведский easy laser (D525 и пр.)

Система преднозначена для различных измерений и выверки машин и механизмов от малых до больших. Различные типы измерений: от выверки валов и шкивов до геометрических измерений (плоскостность прямолинейность и пр.). Есть частичная компенсации влияния окружающей среды.

Представляет собой набор различных лазеров и приемников с кронштейнами для их закрепления.

Стоймость от 450 т.р.

2. Американский Excel Precision’s 1100B

Метрологическая система преднозначенная для поверки станков. решаемы задачи вполне стандартные: перпендикуляность, плоскостность, паралельность и пр. Есть частичная компенсация влияния внешней среды.

Стоймость неизвестна (ответа от производителя не получил)

Представляет собой 2 модуля: лазер и приемник.

Точность 0,0005-0,0002 мм/м в зависимости от задач

3. Шведский Fixturlaser Geometry System

Очень похожая по фунциональности и по параметрам с Easy Laser.

Представляет собой набор различных лазеров и приемников с кронштейнами для их закрепления. Есть частичная компенсации влияния окружающей среды.

Стоймость от 600 т.р.

Точность 0,01-0,02 мм/м в зависимости от задач

4. Итальянский OPTODYNE MCV-400 (и пр.)

Система для лазерной калибровки и поверки машин и механизмов. Представляе собой набор лазерных, зеркальных модулей и приемников. Есть компенсации влияния окружающей среды.

Стоймость от 800 т.р.

Точность 0,001-0,002 мм/м в зависимости от задач.

5. Эстонская LSP30

На самом деле является системой для лазерных геометрических измерений. т.е. интерфейс программы управления бедненький. Представляет собой модуль лазерный интерферометра и приспособления для измерения резличных геометрических параметров: плоскостности, паралельности и пр. Нет компенсации влияния окружающей среды.

Стоймость от 500 т.р.

Точность 0,00025-0,0025 мм/м в зависимости от задач.

6. Американская Hamar Laser L-743.

система очень похожая на Renishaw ML10 со всеми вытекающими отсюда последствиями. Рзличные модули для поврота и приема луча.

Есть компенсации влияния окружающей среды.

Стоймость от 1,5 млн. р.

Точность 0,0001-0,0008 мм/м в зависимости от задач.

7. Американская API XD Laser Measurement Systems

Одна из самых мощных по применению и по точности систем. Та же модульная систем, но с 3 лазерами и множеством детекторов и поворотных устройств. Есть компенсации влияния окружающей среды.

Точность 0,00005-0,0025 мм/м в зависимости от задач и исполнения системы.

Стоймость неизвестна.

8. Америкаская PINPINT"s PLS-100

Такой Американский "Лего" для поверки станка. Лезер и различные модули для поворота и приема луча. Нет компенсации влияния окружающей среды.

Точность 0,001-0,01 мм/м в зависимости от задач и исполнения системы.

Стоймость неизвестна.

Каждая система характеризуется максимальным расстоянием работы но даже в самых простых оно не менее 10м. (для моих задач вполне достаточно).

Представитльства есть в России у Easy Laser и по моему у API. Когда общался с эстонцами, то выяснилось что в тот момент самы знающий человек в Китае, но вроде должен был вернуться уже.

Вроде пока все.

P.S. У самого сейчас руководство наконец осознало необходимость в подобной системе и вроде как готово заказать что-то из вышеперичисленного но недорогого.

Доброго времени суток!

Насчет недорого! Стоимость как правило складывается из требований по компректации, минимум Лазерная голова + Оптика для линейных измерений + Софт и выдет около 700 тысяч руб. с ндс., комплект для работы в термоконстантном помещении, или с ручным вводом значений параметров окружающей среды и будет работать до 40 метров. Просто для нормальной эксплуатации нужен блок авто-компенсации, крепеж, тренога и прочее. Вот стоимость выходит на рубеж 1,3 лимона.

А полный комплект выдет на 4 с лишним ляма. Гарантированно могу сказать, что стоимость аналогичного набора не будет сильно отличатся от производителя.

Даже у нас действуют европейские цены, при ввозе из за рубежа другие могут сэкономить только на таможне, что черевато при возникновении гарантийного случая.

Тут проскочили высказывания по поводу плохой работы в Питерском представительстве, просто входящая информация не всегда коректна и часто неоходимо уточнять "что клиет хочет получить в итоге", для правильного предложения. Ну и неприятности, Питерский офис закрыли. :(

Критерий жесткости в машинах наряду с критерием прочности является одним из важнейших. Его роль непрерывно растет, с одной стороны, в связи с повышением требований к точности, с другой стороны, в связи с отставанием роста модуля упругости материалов от роста их прочностных характеристик. В станкостроении критерий жесткости имеет особо большое значение, так как наряду с геометрической и кинематической точностью жесткость станков обуславливает точность обработанных деталей.

Под точностью обработки понимается степень соответствия формы и размеров детали формам и размерам, заданным чертежом. Полное их соответствие может быть у идеальной детали с абсолютно точными размерами и геометрически правильными поверхностями. Однако, реальные детали никогда в точности не соответствуют заданным, всегда есть отклонения. Поэтому принято точность характеризовать величиной погрешности, т. е. отклонением реальной детали от заданной. Соответственно различают погрешности формы деталей и размеров. Погрешность формы представляет ошибку взаимного расположения поверхности детали. Это может быть не прямоугольность, не плоскостность и не прямолинейность кромок, а также их не параллельность. Цилиндрические детали могут быть выполнены конусными, овальными, бочкообразными.

Учитывая, что значительная номенклатура деталей изготавливается из труднообрабатываемых материалов, в связи, с чем удельный вес погрешностей обработки, вызываемых недостаточной жесткостью в балансе точности станка возрастает.

Под жесткостью системы станка вдоль данной оси понимают отношение составляющей силы резания по этой оси к упругому перемещению в этом же направлении от равнодействующей силы резания. Упругие деформации приводят к неправильному контакту деталей и к резкому ухудшению их совместной работе. Важнейшим условием хорошей работы подшипников, зубчатых и червячных передач является малость концентрации нагрузки, определяемая упругими деформациями валов.

Определение показателя жесткости является также актуальной задачей при входном контроле вновь приобретаемого металлорежущего оборудования и для оценки качества станков после ремонта и модернизации.

Узлы работающего станка подвергаются воздействию сил резания, трения, инерции; сил, вызываемых весом обрабатываемых заготовок и технологической оснастки; сил, возникающих при закреплении заготовок. Под действием этих сил возникают упругие деформации деталей, входящих в узел, и деформации стыков. Соответственно различают собственную и контактную жесткость.

Узлы станка, несущие заготовку и инструмент, являются основными узлами, определяющими их взаимное расположение в процессе обработки под действием вышеуказанных сил, и определяют точность обработанных деталей. Поэтому жесткость основных узлов определяет жесткость станка в целом.

Для станков токарной группы с ЧПУ ГОСТ устанавливает в качестве показателя жесткости относительное перемещение под нагрузкой закрепленной на шпинделе оправки относительно револьверной головки.

При статическом методе испытания на жёсткость нагрузки, действующие на оправку в шпинделе и револьверную головку, имитируются приближенно, так как при этом не создаётся крутящий момент и осевая составляющая силы резания.

Нагружение системы силой Р производится в плоскости, перпендикулярной оси вращения шпинделя, под углом 60° к направлению поперечной подачи.

При испытаниях токарных станков на жесткость производят искусственное нагружение, имитирующее результирующую составляющих сил резания Pz , Py, Px. Статическое нагружение создают специальным устройством, конструкция и техническая характеристика которого должна соответствовать типу и размеру станка.

Относительные перемещения измеряют индикатором часового типа (МИГ) с ценой деления 1мкм и диапазоном измерения, превышающим в 1.5-2 раза предельно допустимое значение этих перемещений.

Список литературы

  1. Испытания и исследования металлорежущих станков: методические указания к лабораторным работам / сост. Ю. В. Кирилин. - Ульяновск: УлГТУ, 2012. - 48 с.
  2. Металлорежущие станки и автоматы. Учебник для ВУЗов. Под ред. А.С.Проникова - М.: Машиностроение. 1981г.
  3. Ресурсы сети Internet.

ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ТОЧНОСТЬ ТОКАРНОГО

СТАНКА С ЧПУ

Доц, В.В. ДО ДОНОВ, доц. Ю.В. НИКУЛИН

В статье рассмотрены вопросы формирования точности токарных станков. Представлены экспериментальные методы оценки точности вращения шпиндельного узла по параметрам его круговых траекторий с приложением и без приложения к нему рабочих нагрузок; обсуждаются вопросы определения точности перемещения суппорта станка, влияние тепловых деформаций станка на его точность. Приводится схема измерительно-испытательной установки и результаты измерения параметров, характеризующих точность токарных станков

Questions of precision quality shaping of lathes are examined in this article. Experimental methods of an exactitude estimation of a head slide rotation on parameters of its circular trajectories with and without the application of working loadings are presented. Also questions of running accuracy of a planing tool box, influence of thermal strains of the machine tool on its exactitude are discussed. The scheme of measuring and presetting station and results of measurements on parameters describing exactitude of

lathes are presented in conclusion.

Повышение качества металлорежущих станков - одна из основных проблем современного машиностроения. Технологический процесс обработки резанием должен гарантированно обеспечивать заданное качество изготовления деталей в соответствии с установленными чертежами, технологическими требованиями. Важнейшая компонента, средство реализации технологического процесса - металлорежущий станок- это сложная прецизионная технологическая машина, формирующая показатели качества обрабатываемых на ней деталей. Уровень качества металлорежущего станка определяется, в основном, требованиями к точности обрабатываемых деталей - точность размеров, формы, взаимного расположения, обрабатываемых поверхностей, шероховатость, волнистость. Более высокие требования к станкам возникают при окончательной обработке, формирующей параметры жесткости обрабатываемого изделия. Ввиду этого показатели жесткости металлорежущего станка являются основными показателями, от реализации которых зависит эффективность его применения.

Испытания токарных станков на геометрическую и кинематическую точность включают проверки точности вращения шпинделя, прямолинейности направляющих, прямолинейности перемещения суппортов, оценивается правильность взаимного движения узлов станка, параллельность и перпендикулярность направляющих и оси шпинделя.

Испытания станков на статическую жесткость предусматривают измерение деформаций под рабочей нагрузкой узлов токарного станка - шпиндельного узла и суппорта. Динамические процессы в станке при обработке резанием измеряется при испытаниях станка на виброустойчивость , которая оказывает непосредственное влияние на точность формы обработанной детали, волнистость и шероховатость обработанной поверх-

ности. При повышении требований к точности обработки все более возрастающую роль в формировании точности обработки играть тепловые деформации .

Точности обработки на токарных станках во многом определяется геометрической точностью станков, геометрической точностью шпиндельного узла (ШУ), приво-

да продольной и поперечной подачи, несущей системой станка, что, в основном, определяет точность взаимного положения инструмента и детали в процессе обработки , .

Точность обработки на токарных станках определяется комплексным влиянием входящих в технологическую систему станка подсистем, факторов, компонент (рис. 1).

Рис. 1. Технологическая система станка

Точность металлорежущих станков определяется тремя группами показателей : 1) показатели, характеризующие точность обработки образцов изделий; 2) показатели, характеризующие геометрическую точность станков; 3) дополнительные показатели.

Геометрическая точность станка характеризуется такими группами показателей : точность траекторий перемещения рабочих органов станка, несущих заготовку и инструмент; точность расположения оси вращения и направления прямолинейных перемещений рабочих органов станка, несущих заготовку и инструмент, относительно друг друга и относительно баз; точность баз дня установки заготовки и инструмента; точность координатных перемещений (позиционирования) рабочих органов станка несущих заготовку и инструмент.

Предусмотренные стандартами и техническими условиями проверки геометрической точности отражают влияние точности станка на точность обработки.

Зажим, вращение и обработка изделия на токарном станке осуществляются с помощью шпиндельного узла.Токарный станок является основной подсистемой во многом определяющей качество обработки: точность, чистота поверхности, волнистость. Существенный вклад в формирование качества обработки вносят и другие подсистемы и факторы: погрешности приспособления, погрешности ШУ, точность работы приводов подачи станка, систем управления и измерения, свойства заготовки .

Максимальная точность обработки диаметральных размеров на современных токарных станках оценивается величинами 0,5,. Л мкм , поэтому при разработке основных формообразующих узлов токарного станка - ШУ и приводов продольной и поперечной подачи предъявляются очень жесткие требования, так как их геометрические погрешности должны быть меньше суммарного допуска на обработку.

Для экспериментального определения параметров и характеристик круговых траекторий ШУ, определяющих допустимую жесткость токарной обработки на кафедре станков и автоматов МГТУ им. Н.Э.Баумана разработана измерительная установка, схема которой представлена на рис. 2.

Схема испытательной установки

Тензометрический усилитель

Цифровой вольтметр

Цифровой вольтметр

Таблица координат по оси X

Таблица координат по оси У

Траектория

оси шпинделя

Рис. 2. Схема испытательной установки

В схему испытательной установки (информационно-измерительный канал (ИИК) круговые траектории (КТ)) входят следующие измерительные приборы и оборудование: датчики Д1-Д4 (первичные бесконтактные преобразователи информации индуктивного типа); тензометрический усилитель типа УТ4-1; аналого-цифровой преобразователь; персональная ЭВМ для сбора результатов эксперимента, обработки и отображения их на графическом мониторе, печатающем и графопострои-тельном устройствах; гидравлическое нагрузочное устройство (ГНУ), служащее для имитации сил резания. ГНУ, представляет собой два взаимно перпендикулярных нагружающих гидроцилиндра, закрепленные на общем кронштейне в суппорте испытуемого станка.

Испытательно-измерительная установка содержит два канала измерения: по координате X и по координате К Основные технические характеристики испытательно-измерительной установки:

диапазон измерения смещений оси ШУ по каждому каналу, мкм...........................20

диапазон частоты вращения ШУ, на которых осуществляется измерение,

об/мин..........................................................................................................................±6000

быстродействие первичных преобразователей, мс...............................................-0,003

максимальная погрешность измерения, мкм............................................................±0,5

Точность вращения шпинделя на холостом ходу станка зависит от математического ожидания и среднеквадратического отклонения значений эксцентриситетов для каждой /-ой опоры шпинделя от четырех видов погрешностей: биение шейки относительно его осей; биение дорожки качения внутреннего кольца подшипника относительно посадочного отверстия; биение дорожки качения наружного кольца подшипника относительно его наружной поверхности; несоосность посадочного отверстия под подшипник в шпиндельной бабке (пиноли).

отклонения

биения шпиндельного узла токарного станка СТП-125 дал следующие результаты:

влияющим на точность токарного станка является суммарная

кам сил резания задавались с помощью ГНУ

Сила резания Ру

Сила резания Ру

125 250 500 1000 2000

(шкапа неравномерная)

Перемещение по оси 1

Рис. 3. Графики зависимостей

В МГТУ им. Н.Э. Баумана, на кафедре металлорежущих станков был разработан стенд для измерения круговых траекторий (КТ) шпиндельного узла (ШУ). В качестве объекта испытаний был использован станок СТП-125. Были проведены пробные испытания ШУ по параметрам КТ,

Проведение предварительных испытаний. Условия проведения испытаний. Испытания проводились на разогретом в течение 2-3 часов станке при повороте ШУ вручную, при холостом ходе с разным числом оборотов вращения ШУ, под нагрузкой, создаваемой гидравлическим нагрузочным устройством (ГНУ). В последнем случае варьировали как числом оборотов л, так и величиной нагрузки Р (рис. 3), радиально нагружающей специальную оправку, вставленную в ШУ. Радиальные смещения ШУ измерялись вдоль координат А" и Ус помощью 4-х индуктивных бесконтактных преобразователей, работающих на несущей частоте 5200 Гц, Сигнал с индуктивных преобразователей поступал на четырехканальный тензоусилитель, а затем, после АЦП и ЭВМ, - на графопостроитель.

Результаты предварительных испытаний приведены на рис. 4-6. Испытания проводились на холостом ходу при п = 100 . На рис. 5 и 6 приведены типичные траектории оси ШУ, выведенные на экран ЭВМ.

Точность вращения шпинделя зависит от точности изготовления его деталей, точности подшипников, качества его сборки и регулировки. Погрешности вращения шпинделя, в первую очередь, определяются разностенностью колец подшипника и разноразмерное-

Рис. 4. Биение оси шпинделя на холостом ходе

Рис, 5. Траектория оси шпиндельного узла

Рис. 6. Траектория оси шпиндельного узла

тью тел качения. Эта погрешность у подшипников малых и средних размеров лежит в пределах 1...10 мкм (в зависимости от класса точности и размера подшипника).

Волнистость дорожек и геометрические погрешности тел качения вызывают меньшие смещения шпинделя порядка 0,1... 1 мкм и накладываются в виде высококачественных составляющих на погрешности от разностенности колец.

Еще более высокую частоту и меньшую амплитуду колебаний шпинделя вызывает шероховатость дорожек качения. Сложение этих колебаний вызывает сложную, комплексную картину перемещения оси шпинделя в пространстве (фигуры Лиссажу, перемещение оси шпинделя по гипоциклоиде или эпициклоиде с различным числом петель).

Большое влияние на точность вращения шпинделей станков, особенно высокоскоростных, оказывает остаточный дисбаланс, который определяется в [Н мм/Н] либо в виде эксцентриситета е в [мкм], который определяет действительное смещение центра тяжести шпинделя относительно оси вращения . Одеваемый на шпиндель патрон также должен быть отбалансирован .

Результаты испытаний на холостом ходу при проворачивании ШУ от руки вывести на ЭВМ не представляется возможным из-за особенностей программного обеспечения ЭВМ. Однако измерения радиального биения ШУ с помощью датчиков показало, что его численная величина находится в пределах 1,5-2,5 мкм по обеим координатам X и У и по своей величине несколько меньше соответствующего радиального биения при измерении ШУ на холостом ходу без нагрузки.

Испытания биения ШУ без нагрузки на холостом ходу проводились при различных числах оборотов ШУ: п = 10, 30, 70, 100, 160, 220, 300, 450, 600, 800, 1000, 1300, 2000 об/мин (рис. 7),

100 " 200 " 300 " 400 500 600 ,~700 " 8СО 900 " 1000 " 1100 " 1200 " 1300

Рис, 7. Биение шпиндельного узла на холостом ходу без нагрузки на различных оборотах вращения

Испытания показали, что с ростом числа оборотов ШУ радиальное биение монотонно возрастает до п = 500-600 об/мин, а затем скорость увеличения амплитуды радиального биения имеет тенденцию к некоторому увеличению. Измерения проводились при одетом патроне.

Шпиндельный узел представляет собой сложную механическую систему, состоящую из упругих элементов нескольких типов: подшипника, вала, фланцев, втулок, пружин, связанных между собой, воздействующих друг на друга и образующих единое техническое устройство, в котором протекают сложные процессы, каждый из которых может быть описан своей математической моделью .

Наиболее существенные модели: упругодеформационная, динамическая, вибрационная, трибологическая, тепловая, усталостного разрушения.

Входами этих моделей являются конструктивные и технологические факторы проектирования и изготовления шпинделя, условия эксплуатации. Выходные параметры моделей - это жесткость, вибрации, момент трения, быстроходность, технический ресурс, теплоустойчивость, усталостная долговечность и другие расчетные параметры, характеризующие в том числе и геометрическую точность станка и точность обработки на нем детали.

При испытании ШУ при снятом патроне с фиксированной частотой его вращения (п = 1000 1/мин) и нагрузке, которая задавалась гидравлическим нагрузочным устройством, круговая траектория ШУ несколько расширялась по своему среднему диаметру (увеличение Ах и Ду) и смещалась в направлении действия нагрузки

%=№ - р; (рис- 8)-

В результате предварительных испытаний определялась также зависимость амплитуды колебаний ШУ от частоты (АЧХ*). Исследования проводились с помощью специального анализатора спектра колебаний типа СК4-72 Сигнал поступал с датчиков перемещений на вход анализатора, строились АЧХ колебаний ШУ при различных частотах его вращения.

Амплитуды А и В АЧХ примерно соответствуют по частоте колебаниям ШУ от колебания жесткости, вызванного 18 опорами качения переднего подшипникового узла и колебаниями зубчатого приводного ремня.

При работе станка между заготовкой и инструментом возникают относительные колебания, вызывающие те или иные погрешности обработки. Для снижения уровня этих колебаний и по-

вышения устойчивости динамической системы станка проводят построения форм колебаний шпиндельного узла и суппорта. Форма колебаний характеризуется совокупностью отношений перемещений отдельных колеблющихся

точек упругой системы к перемещению какой-либо одной точки, взятых в определенный момент времени (с учетом сдвига фаз) для определения частоты и направления колебаний. Рабочий диапазон частоты колебаний находится обычно в пределах от 10 до 500 Гц.

Для повышения точности измерения желательно использовать избыточное число точек измерения вибраций. Вибрации измеряют, как правило, в 2--3-х взаимно перпендикулярных направле-

Рис. 8. Круговая траектория шпиндельного узла под

нагрузкой

Форму колебаний измеряют виброметрами, которые могут работать в режимах измерения виброперемещения, виброскорости и виброускорения. Первый режим используется в низкочастотной области (до 200 Гц), второй предпочтителен для частот (100-400 Гц), третий используется для более высокочастотных рабочих диапазонов виброметрирования.

Траектория какой-либо фиксированной точки на торце шпинделя с достаточно большим приближением отражает форму поперечного сечения обрабатываемой детали. Степень этого приближения определяется, кроме того, и радиальным смещением инструмента, закрепленного на суппорте при поперечной подаче и отклонениями траектории

суппорта от прямолинейного движения при продольной подаче.

Были определены теоретически и проверены экспериментально (рис, 9) данные о точности диаметральных размеров изготовляемой детали. Она зависит от точности позиционирования Д поз привода поперечной подачи, т.е. от отклонения действительного положения привода Х1 от заданного программой X при многократном двустроннем позиционирова-

нии, Методами математической статистики при испытаниях приводов определяются X л и

Средние арифметические значения положения привода при позиционировании в

среднее ар!

е того, определяются средние квадратические отклони ческое значение действительного положения привода.

X = (X п + X „)/2; За ■- величина зоны рассеивания;

/ - ! X + X . | - зона нечувствительности, возникающая при реверсе привода

поперечной подачи (рис. 9).

Измеренное на станке максимальное значение оказалось равной 5,5 мкм. Реальная погрешность от Д при обработке детали будет зависеть от диаметра обработки.

к Д поз, мкм

Рис. 9. График погрешностей двустороннего позиционирования револьверной головки станка СТП-125 при

поперечном перемещении

1. Разработана и опробована испытательно-измерительная установка для измерения параметров круговых траекторий шпиндельного узла токарного станка с ЧПУ.

2. В результате испытаний токарного станка СТП-125 получены результаты влияния внешних возмущающих воздействий (сил резания, смещения шпинделя) на параметры круговых траекторий шпиндельного узла.

3. Проведена оценка влияния погрешностей позиционирования поперечного суппорта на точность обработки.

4. Показаны пути и возможности диагностирования шпиндельного узла и суппортной группы токарного станка с ЧПУ

СПИСОК ЛИТЕРАТУРЫ

1. VDI Richtlinien 2060, «Нормы для балансировки вращающихся твердых тел». -1980.

2. ГОСТ8-82Е, «Станки метет л о режу щи е. Общие требования к испытаниям на точность». - М.: Изд-во Стандартов, 1982. - 10 с.

3. Проников А. С. Программный метод испытания металлорежущих станков. - М.: Машиностроение, 1985. - 288 с.

4. Адаптивное управление станками. / Под ред. Балакшина. - М.: Машиностроение, 1973. - 688 с.

5. Конструкции и программные испытания шпиндельных узлов металлорежущих станков / Л.И. Вереина, В.В, Додонов. - М.: ВНИИТЭМР, 1991. - Вып. 1.

6. Фигатнер А.М. Расчет и конструирование шпиндельных узлов с подшипниками качения металлорежущих станков. - М.: НИИМАШ, серия С-1, 1971.

7. Расчет высокоскоростных шпиндельных узлов / В.Б. Бальмонт. - М.: ВНИИТЭМР, 1987. - Сер. I. - Вып. 1. - 52 с.

Обработка металла с высокой (прецизионной) точностью требует особого подхода для изготовления станочного оборудования. Все прецизионные станки делятся на классы по степени предельной точности, с которой они способны обрабатывать детали:

  • Станки класса А (особо высокая точность).
  • Класс B (оборудование высокой точности).
  • Класс C (станки особой точности).
  • Станки класс П (повышенная точность обработки).

Прецизионное оборудование обеспечивает обработку деталей идеальной геометрической формы, особо точным пространственным расположением осей вращения. Станки позволяют получить шероховатость поверхности до одиннадцатого класса чистоты. Параметры изготовления, при определенных условиях, достигают значений характерных для первого класса чистоты.

Для достижения таких показателей необходимо применение станочных узлов и агрегатов, изготовленных по соответствующим стандартам, имеющих минимальные погрешности при их производстве . Особое значение придается используемым подшипникам. На прецизионных станках по металлу используются гидродинамические и аэростатические подшипники высокого класса изготовления.

При работе металлообрабатывающего оборудования происходит большое выделение тепла, воздействующее как на узлы станка, так и на заготовки. При этом и те, и другие испытывают механические деформации, приводящие к снижению точности изготовления. В высокоточных станках реализована функция активного отвода тепла, препятствующая геометрическим отклонениям элементов станка и деталей. Понижение уровня нежелательных вибраций также способствует точности изготовления.

Основы теории высокоточной обработки металла

Современный металлорежущий станок можно рассматривать как некую систему из трех составляющих: измерительной, вычислительной, исполнительной. Ни одна из них несовершенна, каждая вносит погрешности в точность изготовления.

Точность измерительной части зависит от показаний применяемых датчиков. Точность измерения повышается с применением более совершенных датчиков - измерительных устройств. Сегодня подобные устройства способны отслеживать размеры до нескольких нанометров.

Исполнительная точность непосредственно зависит от узлов и агрегатов станка. Чем выше будут параметры составляющих оборудования, тем меньшая сложится окончательная погрешность.

К погрешностям металлообрабатывающих станков относятся:

  • Геометрические , зависящие от качества изготовления комплектующих станка и их сборки. От этого зависит точность расположения относительно друг друга рабочего инструмента и заготовки в процессе обработки.
  • Кинематические погрешности зависят от соответствия передаточных чисел в механизмах станка. Кинематические цепи особое влияние оказывают на точность изготовления зубчатых элементов, резьбы.
  • Упругие погрешности определяются деформациями станка. В процессе резания происходит отклонение, под действием возникающих сил, взаимного расположения инструмента и заготовки. В прецизионных станках, для борьбы с такими проявлениями, создают особо жесткие конструкции.
  • Температурные . Неравномерный нагрев узлов станка приводит к потере начальной геометрической точности, снижая качество изготовления.
  • Динамические погрешности объясняются относительными колебаниями рабочего инструмента и заготовки.
  • Погрешности изготовления и установки режущего инструмента.

Двигатели, редукторы содержат подвижные части, имеющие люфты, поверхности скольжения со временем претерпевают износ - все это непосредственно влияет на качество обработки. Такое понятие,

как точность позиционирования системы «станок - деталь», напрямую зависит от исполнительной точности.

Некоторые способны обрабатывать детали с точностью до 0,0002 мм, при частоте вращения шпинделя 15000 об/мин. Такие показатели имеют и оборотную сторону. Стоимость оборудования значительно выше по сравнению с обычными станками. Это является следствием применения новейших наукоемких технологий при изготовлении станков. В качестве примера можно указать использование аэростатических направляющих, где суппорт с рабочим инструментом скользит на расстоянии в несколько микрон от поверхности. То есть фактически находится в «воздухе».

Современный прецизионный шлифовальный станок - это автоматизированный комплекс, позволяющий обрабатывать детали с точностью до 0,01 мм . Служит для заточки инструментов из алмазов, твердых сплавов, инструментальной стали. Ультрапрецизионные шлифовальные станки способны обрабатывать внутренние и внешние поверхности детали за одну установку. Прецизионный сверлильный станок обладает жесткой конструкцией, оборудован цифровой индикацией, отображающей параметры сверления.

Общим для всех типов прецизионных станков является использование в приводах фрикционных передач. При этом повышается качество изготовления, упрощаются кинематические цепи. Более высокий КПД снижает себестоимость работ.

Рекомендуем почитать

Наверх