История развития вычислительной техники кратко и понятно. История развития вычислительной техники

НК РФ 19.12.2021
НК РФ

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer - «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак . Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты .

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккард разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 году французский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин »), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия . Машину Калмара назвали арифмометр . Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 году английский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины , которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada . День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные . Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором , могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1 », по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1 » был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте . Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт. В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами . Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева. Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 году фирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора , но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple ; в СССР ПК появились в 1985г .

Таблица 1. Поколения ЭВМ

Показатель

Поколения ЭВМ

1950-1960-е годы

1960-1970-е годы

1970-1980-е годы

Четвертое

1980-1990-е годы

1990-настоящее время

Элементная база процессора

Электронные лампы

Полупроводники (Транзисторы)

Малые интегральные схемы (МИС)

Большие ИС (БИС) и Сверхбольшие ИС (СБИС)

Оптоэлектроника

Криоэлектроника (лазеры, голография)

Элементная база ОЗУ

Электронно-лучевые трубки

Ферритовые сердечники

Кремниевые кристаллы

БИС и СБИС

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, клавиатура, “мышь” и др.

Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Магнитный диск

Перфоленты, магнитный диск (30 см в диаметре)

Магнитные и оптические диски

Максимальная емкость ОЗУ, байт

Максимальное быстродействие процессора (оп/с)

Многопроцессорность

Многопроцессорность

Языки программирования

Универсальные языки программирования, трансляторы (машинный код)

Пакетные операционные системы, оптимизирующие трансляторы

(Ассемблер, Фортран)

Процедурные языки высокого уровня (ЯВУ)

Новые процедурные ЯВУ и Непроцедурные ЯВУ

Новые непроцедурные ЯВУ

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов

История развития средств инструментального счета позволяет лучше понять действие современных вычислительных машин. Как говорил Лейбниц: "Кто хочет ограничиться настоящим без знания прошлого, тот никогда не поймет настоящего." Поэтому изучение истории развития ВТ является важной составной частью информатики.

Люди с древних времен использовали для счета различные приспособления. Первым таким "приспособлением" были собственные пальцы. Полное описание пальцевого счета составил в средневековой Европе ирландский монах Беда Достопочтенный (7 век н.э.). Различные приемы пальцевого счета использовались до 18 века.

В качестве средств инструментального счета использовались веревки с узелками.

Наиболее широкое распространение в древности получил абак, сведения о котором известны с V в до н.э. Числа в нем представлялись камешками, раскладываемые по столбцам. В древнем Риме камешки обозначались словом Calculus, отсюда произошли слова, обозначающие счет (английское calculate – считать).

Счеты, широко использовавшиеся на Руси, по принципу действия похожи на абак.

Необходимость использования различных устройств для счета объяснялись тем, что письменный счет был затруднен. Во-первых, это было связанно со сложной системой записи чисел, во-вторых, писать умели немногие, в-третьих, средства для записи (пергамент) были очень дороги. С распространением арабских цифр и изобретением бумаги (12-13 век) стал широко развиваться письменный счет, и абак стал не нужен.

Первым устройством, механизирующий счет в привычном для нас понимании, стала счетная машинка, построенная в 1642 году французским ученым Блезом Паскалем. Она содержала набор вертикально расположенных колес с нанесенными на них цифрами 0-9. Если такое колесо совершало полный оборот, оно сцеплялось с соседним колесом и проворачивало его одно деление, обеспечивая перенос из одного разряда в другой. Такая машина могла складывать и вычитать числа и использовалась в конторе отца Паскаля для подсчета сумм собираемых налогов.

Различные проекты и даже действующие образы механических счетных машин создавались и до машины Паскаля, но именно машина Паскаля получила широкую известность. Паскаль взял патент на свою машину, продал несколько десятков образцов; его машиной интересовались вельможи и даже короли; например, одна из машин была подарена шведской королеве Христине.

В 1673г. немецкий философ и математик Готфрид Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Эта машина стала основой массовых счетных приборов - арифмометров. Выпуск механических счетных машин был налажен в США в 1887, в России в 1894. Но эти машины были ручными, то есть требовали постоянного участия человека. Они не автоматизировали, а лишь механизировала счет.

Большое значение в истории вычислительной техники занимают попытки "заставить" технические устройства выполнять какие-либо действия без участия человека, автоматически.

Большое развитие такие механические автоматы, построенные на основе часовых механизмов, получили в 17-18 веках. Особенно были известны автоматы французского механизма Жака де Вокансона, среди которых была игрушка-флейтист, внешне выглядевшая как обычный человек. Но это были всего лишь игрушки.

Внедрение автоматизации в промышленное производство связывается с именем французского инженера Жаккара, который изобрел устройство управления ткацким станком на основе перфокарт – картонок с отверстиями. По-разному пробивая отверстия на перфокартах, можно было получать на станках ткани с разным переплетением нитей.

Отцом вычислительной техники считается английский ученый 19 века Чарльз Бэббидж, который впервые предпринял попытку построить счетную машину, работающую по программе. Машина предназначалась для помощи Британском морскому ведомству в составлении мореходных таблиц. Бэббидж считал, что машина должна иметь устройство, где будут храниться числа, предназначенные для вычислений ("память"). Одновременно там же должны находиться команды о том, что с этими числами делать ("принцип хранимой программы"). Для выполнения операций над числами в машине должно быть специальное устройство, которое Беббидж назвал "мельницей", а в современных компьютерах ему соответствует АЛУ. Вводиться в машину числа должны были вручную, а выводиться на печатающее устройство ("устройства ввода/вывода"). И наконец, должно было быть устройство, управляющее работой всей машины ("УУ"). Машина Бэббиджа была механической и работала с числами, представленными в десятичной системе.

Научные идеи Беббиджа увлекли дочь знаменитого английского поэта Джорджа Байрона – леди Аду Лавлейс. Она составила программы, по которым машина могла бы производить сложные математические расчеты. Многими понятиями, введенными Адой Лавлейс в описании тех первых в мире программ, в частности, понятием "цикл", широко пользуются современные программисты.

Следующий важный шаг на пути автоматизации вычислений сделал примерно через 20 лет после смерти Беббиджа американец Герман Холлерит, который изобрел электромеханическую машину для вычислений с помощью перфокарт. Машина использовалась для обработки данных переписи населения. На перфокартах вручную пробивались отверстия в зависимости от ответов на вопросы переписи; сортировальная машина позволяла распределять карты на группы в зависимости от места пробитых отверстий, а табулятор подсчитывал число карт в каждой группе. Благодаря этой машине обработку результатов переписи населения Соединенных Штатов Америки 1890г удалось провести втрое быстрее предыдущей.

В 1944 году в США под руководством Говарда Айкина была построена электромеханическая вычислительная машинка, известная как "Марк–1 ", а затем и "Марк–2 ". Эта машина была основана на реле. Поскольку реле имеют два устойчивых состояния, а идея отказаться от десятичной системы еще не приходила в голову конструкторам, то числа представлялись в двоично-десятичной системе: каждая десятичная цифра представлялась четырьмя двоичными и хранилась в группе их четырех реле. Скорость работы составляла около 4х операций в секунду. Тогда же было создано еще несколько релейных машин, в том числе советская релейная вычислительная машина РВМ–1, сконструированная в 1956г Бессоновым и успешно работавшая до 1966г.

За точку отсчета эры ЭВМ обычно принимают 15 февраля 1946г, когда ученые Пенсильванского университета ввели в строй первый в мире компьютер на электронных лампах – ЭНИАК. Первым применением ЭНИАК было решение задач для сверхсекретного проекта атомной бомбы, да и затем он использовался в основном в военных целях. В ЭНИАК не существовало программы, хранимой в памяти; "программирование" осуществлялось с помощью установки проводов-перемычек между отдельными элементами.

С 1944 года в работе над созданием ЭВМ принимал участие Джон фон Нейман. В 1946 году была опубликована его статья, в которой были сформулировали два важнейших принципа, лежащие в основы всех современных ЭВМ: использование двоичной системы счисления и принцип хранимой программы.

Появились ЭВМ и в СССР. В 1952 г под руководством академика Лебедева была создана самая быстродействующая ЭВМ в Европе – БЭСМ, в 1953г начат выпуск серийной ЭВМ "Стрела". Серийные советские машины были на уровне лучших мировых образцов.

Началось бурное развитие ВТ.

Первая вычислительная машина на электронных лампах (ЭНИАК) насчитывала около 20 тыс. электронных ламп, размещалась в огромном зале, потребляла десятки кВт электроэнергии и была очень ненадежна в работе – фактически работала только небольшие промежутки времени между ремонтами.

С тех пор развитие ВТ прошло огромный путь. Выделяют несколько поколений ЭВМ. Под поколением понимается определенный этап развития аппаратуры, характеризующийся ее параметрами, технологией изготовления составных частей и т.д.

1 поколение – начало 50х годов (БЭСМ, Стрела, Урал). Основаны на электронных лампах. Большая потребляемая мощность, малая надежность, низкое быстродействие (2000 оп/с), малый объем памяти (несколько килобайт); отсутствовали средства организации вычислительных процессов, оператор работал непосредственно за пультом.

2 поколение – конец 50х годов (Минск – 2, Раздан, Наири). Полупроводниковые элементы, печатный монтаж, быстродействие (50-60 тыс. оп/с); появление внешних магнитных запоминающих устройств, появились примитивные операционные системы и трансляторы с алгоритмических языков.

3 поколение – середина 60х годов. Построены на основы интегральных микросхем, использовались стандартные электронные блоки; быстродействие до 1,5 млн. оп/с; появились развитые программные средства.

4 поколение – построены на основе микропроцессоров. Компьютеры специализируются, появляются их различные типы: супер ЭВМ – для решения очень сложных вычислительных задач; мэйнфреймы – для решения экономических и расчетных задач в рамках предприятия, ПК – для индивидуальной работы пользования. Сейчас ПК занимают преобладающую часть рынка компьютеров, а их возможности в миллионы раз превосходят возможности первых ЭВМ.

Первый ПК Altair 8800 появился в 1975г в фирме MITS, однако возможности его были весьма ограничены, и коренного перелома в использовании компьютеров не произошло. Революция в индустрии ПК была совершена двумя другими фирмами – IBM и Apple Computer, соперничество которых способствовало бурному развитию высоких технологий, улучшению технических и пользовательских качеств ПК. В результате этого состязания компьютер превратился в неотъемлемую часть повседневной жизни.

История фирмы Apple начался в 1976г, когда в гараже города Лос–Альмос штата Калифорния Стивен Джобс и Стивен Возняк (обоим было чуть за 20) собрали свой первый ПК. Однако настоящий успех пришел к фирме благодаря выпуску компьютера Apple–II, который был создан на основе микропроцессора фирмы Motorolla, внешним видом напоминал обычный бытовой прибор, а по цене был доступен рядовому американцу.

Фирма IBM родилась в 1914 году и специализировалась на выпуске канцелярских товаров пишущих машинок. В пятидесятые годы основатель фирмы Томас Уотсон переориентировал ее на выпуск больших ЭВМ. В области ПК фирма вначале заняла выжидательную позицию. Бешенный успех Apple насторожил гиганта, и в кратчайшие сроки был создан первый IBM PC, представленный в 1981г. Используя свои огромные ресурсы, корпорация буквально наводнила рынок своими ПК, ориентируясь на самую емкую сферу их применения – деловой мир. IBM PC был основан на новейшем микропроцессоре фирмами Intel, позволившими значительно расширить возможности нового компьютера.

Чтобы завоевать рынок, IBM впервые использовала принцип "открытой архитектуры". IBM PC не изготавливался как единое целое, а собирался из отдельных модулей. Любая фирма могла разработать устройство, совместимое с IBM PC. Это принесло IBM огромный коммерческий успех. Но в то же время на рынке стало появляться множество компьютеров – точных копий IBM PC – так называемых клонов. На появление "двойников" фирма ответила резким снижением цен и появлении новых моделей.

В ответ на это фирма Apple создала Apple Macintosh, снабженный мышкой и имеющий высококачественный графический дисплей, а также впервые оснащенный микрофоном и генератором звука. А главное – имелось удобное и легкое в освещении ПО. Мас поступил в продажу и имел определенный успех, но вернуть лидерство на рынке ПК фирме Apple не удалось.

Стремясь приблизиться по удобству использования к компьютерам Apple, фирма IBM стимулировала разработку современного ПО. Огромную роль здесь сыграло создание фирмой Microsoft OC Windows"95.

С тех пор программное обеспечение становиться все более удобным и понятием. ПК оснащаются новыми устройствами и из прибора для профессиональной деятельности становятся "центрами цифровых развлечений", объединяя в себе функции различных бытовых приборов.

Вычислительные приспособления и устройства от древности до наших дней

Основными этапами развития вычислительной техники являются: Ручной - до 17 века, Механический - с середины 17 века, Электромеханический - с 90-х годов 19 века, Электронный - с 40 годов 20 века.

Ручной период начался на заре человеческой цивилизации.

В любой деятельности человек всегда придумывал и создавал самые разнообразные средства, приспособления и орудия труда с целью расширения своих возможностей и облегчения труда.

С развитием торговли появилась потребность в счете. Много веков назад для осуществления различных подсчетов человек начал использовать сначала собственные пальцы, затем камешки, палочки, узелки и прочее. Но со временем задачи, стоящие перед ним, усложнялись, и стало необходимым находить способы, изобретать приспособления, которые смогли бы ему помочь в решении данных задач.

Одним из первых устройств (V в. до н. э.), облегчавших вычисления, можно считать специальную доску, названную впоследствии абаком (с греч. "счетная доска"). Вычисления на ней проводились перемещением костей или камешков в углублениях досок из бронзы, камня, слоновой кости и пр. В Греции абак существовал уже в V веке до н. э. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от бороздок и камешков к мраморным доскам с выточенными желобками и мраморными шариками. С его помощью можно было совершать простейшие математические операции сложения и вычитания.

Китайская разновидность абака - суаньпань - появилась в VI веке н.э.; Соробан же – это японский абак, происходит от китайского суаньпаня, который был завезен в Японию в XV- XVI веках. XVI в. - Создаются русские счеты с десятичной системой счисления. Они претерпевают с веками значительные изменения, но ими продолжают пользоваться вплоть до 80-х годов 20 века.

В начале XVII века шотландский математик Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка успешно использовалась еще пятнадцать лет назад, более 360 лет прослужив инженерам. Она, несомненно, является венцом вычислительных инструментов ручного периода автоматизации.

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический способ вычислений. Среди механических устройств выделяют суммирующие машины (умеют складывать и вычитать), множительное устройство (умножает и делит), со временем их объединили в одну - арифмометр (умеют выполнять все 4 арифметических действия).

В дневниках гениального итальянца Леонардо да Винчи (1452-1519) уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском суммирующей вычислительной машины на зубчатых колесах, способной складывать 13-разрядные десятичные числа. В те далекие от нас годы гениальный ученый был, вероятно, единственным на Земле человеком, который понял необходимость создания устройств для облегчения труда при выполнении вычислений. Однако потребность в этом была настолько малой (точнее, ее не было совсем!), что лишь через сто с лишним лет после смерти Леонардо да Винчи нашелся другой европеец – немецкий ученый Вильгельм Шиккард (1592-1636), не читавший, естественно, дневников великого итальянца, – который предложил свое решение этой задачи. Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной в основном с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает, как она устроена.

Одним из первых образцов таких механизмов были «считающие часы» немецкого математика Вильгельма Шиккарда. В 1623 году он создал машину, которая стала первым автоматическим калькулятором. Машина Шиккарда умела складывать и вычитать шестизначные числа, оповещая звонком о переполнении. К сожалению, данных о дальнейшей судьбе машины история не сохранила.

Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время. Современникам они были неизвестны.

Самой же известной из первых вычислительных машин стала суммирующая машина Блеза Паскаля, который в 1642 г построил модель «Паскалины»- счетной суммирующей машины для восьмизначных чисел. Б.Паскаль начал создавать «Паскалину» в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и был вынужден часто выполнять долгие и утомительные расчёты. И его единственной целью было помочь ему в работе.

В 1673 г. немецкий математик Лейбниц создает первый арифмометр, позволяющий выполнять все четыре арифметических операции. "...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", – писал В. Лейбниц одному из своих друзей. О машине Лейбница было известно в большинстве стран Европы.

Принцип вычислений оказался удачным, в последствие модель неоднократно дорабатывалась в разных странах разными учеными.

И с 1881 г. было организованно серийное производства арифмометров, которые использовались для практических вычислений вплоть до шестидесятых годов XX века.

Самой известной моделью серийного производства был арифмометр Феликс, российского производства, получивший в 1900г. на международной выставке в Париже золотую медаль.

Так же к механическому периоду относят теоретические разработки аналитической машин Бэбиджа, которые не были реализованы из-за отсутствия финансирования. Теоретические разработки относятся к 1920-1971 годам. Аналитическая машина должны была стать первой машиной использующей принцип программного управления и предназначавшейся для вычисления любого алгоритма, ввод-вывод планировался с помощью перфокарт, работать она должна была на паровом двигателе. Аналитическая машина состояла из следующих четырех основных частей: блок хранения исходных, промежуточных и результирующих данных (склад - память); блок обработки данных (мельница - арифметическое устройство); блок управления последовательностью вычислений (устройство управления); блок ввода исходных данных и печати результатов (устройства ввода/вывода), что в дальнейшем послужило прообразом структуры всех современных компьютеров. Одновременно с английским ученым работала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени. Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА. Хотя проект не был реализован, он получил широкую известность и высокую оценку ученых. Чарльз Бебидж на целый век обогнал время.

Продолжение следует…

Начало

Калькулятор и компьютер — далеко не единственные устройства, с помощью которых можно проводить вычисления. О том, как облегчить себе процессы деления, умножения, вычитания и сложения человечество задумалось довольно рано. Одним из первых подобных устройств можно считать балансирные весы, которые появились еще в пятом тысячелетии до нашей эры. Впрочем, не будем погружаться так далеко в глубины истории.

Энди Гроув, Роберт Нойс и Гордон Мур. (wikipedia.org)

Абак, известный у нас как счеты, появился на свет приблизительно в 500 году до нашей эры. За право считаться его родиной могут поспорить Древняя Греция, Индия, Китай и государство Инков. Археологи подозревают, что в античных городах существовали даже вычислительные механизмы, правда, существование таковых пока не доказано. Однако антикерский механизм, уже упомянутый нами в предыдущей статье, вполне может считаться вычислительным механизмом.

С наступлением Средних Веков навыки создания подобных устройств были утрачены. Те темные времена вообще были периодом резкого упадка науки. Но в XVII веке человечество вновь задумалось о вычислительных машинах. И те не замедлили появиться.

Первые вычислительные машины

Создание устройства, которое могло бы производить вычисления, было мечтой немецкого астронома и математика Вильгельма Шиккарда. У него было множество различных проектов, но большинство из них потерпело крах. Шиккарда не смущали неудачи, и он, в конце концов, добился успеха. В 1623-м математик сконструировал «Считающие часы» — невероятно сложный и громоздкий механизм, который, однако, мог производить простейшие вычисления.

«Считающие часы Шиккарда». Рисунок. (wikipedia.org)

«Считающие часы» имели значительные размеры и большую массу, применять их на практике было трудно. Друг Шиккарда, знаменитый астроном Иоганн Кеплер в шутку заметил, что гораздо проще произвести вычисления в голове, чем использовать часы. Тем не менее, именно Кеплер стал первым пользователем часов Шиккарда. Известно, что с их помощью он выполнил многие из своих расчетов.

Иоганн Кеплер. (wikipedia.org)

Это устройство получило свое название потому, что в его основу был положен тот же механизм, что работал в настенных часах. А самого Шиккарда вполне можно считать «отцом» калькулятора. Прошло двадцать лет, и семейство вычислительных машин пополнилось изобретением французского математика, физика и философа Блеза Паскаля. «Паскалину» ученый представил в 1643 году.

Суммирующие машина Паскаля. (wikipedia.org)

Паскалю тогда было 20 лет, и прибор он сделал для своего отца — сборщика налогов, которому приходилось заниматься очень сложными вычислениями. Суммирующая машина приводилось в действие с помощью шестеренок. Чтобы ввести в нее нужное число, нужно было повернуть колесики некоторое количество раз.

Еще через тридцать лет, в 1673-м свой проект создал немецкий математик Готфрид Лейбниц. Его устройство, первым в истории стало называться калькулятором. Принцип работы был тот же, что и у машины Паскаля.

Готфрид Лейбниц. (wikipedia.org)

С калькулятором Лейбница связана одна очень любопытная история. В начале XVIII века машину увидел Петр I, посещавший Европы в составе Великого посольства. Будущий император очень заинтересовался устройством и даже купил его. Легенда гласит, что позже Петр отправил калькулятор китайскому Императору Канси в качестве подарка.

От калькулятора к компьютеру

Дело Паскаля и Лейбница получило развитие. В XVIII веке многие ученые делали попытки усовершенствовать вычислительные машины. Основная идея состояла в том, чтобы создать коммерчески успешное устройство. Успех, в конечном итоге, сопутствовал французу Шарлю Ксавье Тома де Кольмару.

Шарль Ксавье Тома де Кольмар. (wikipedia.org)

В 1820 году он запустил серийное производство вычислительных приборов. Строго говоря, Кольмар был, скорее, умелым промышленником, нежели изобретателем. Его «машина Тома» мало чем отличалась от калькулятора Лейбница. Кольмара даже обвиняли в краже чужого изобретения и попытке нажить состояние за счет чужого труда.

В России серийный выпуск калькуляторов начался в 1890 году. Свой нынешний вид калькулятор приобрел уже в ХХ веке. В 1960—1970 годах эта отрасль переживала настоящий бум. Приборы совершенствовались с каждым годом. В 1965-м, например, появился калькулятор, который мог вычислять логорифмы, а в 1970-м был впервые выпущен калькулятор, помещавшийся у человека в руке. Но в это время уже начинался компьютерный век, хотя человечество еще не успело ощутить этого.

Компьютеры

Человеком, который заложил основы развития компьютерных технологий, многие считают французского ткача Жозефа Мари Жаккара. Сложно сказать, шутка это или нет. Тем не менее, именно Жаккар придумал перфокарт. Тогда люди еще не знали, что такое карта памяти. Изобретение Жаккара вполне может претендовать на этот титул. Ткач придумал ее для управления ткацким станком. Идея состояла в том, что с помощью перфокарта задавался узор для ткани. То есть, с момента запуска перфокарта, узор наносился уже без участия человека — автоматически.

Перфокарт. (wikipedia.org)

Перфокарт Жаккара, естественно, не был электронным устройством. До появления подобных предметов было еще очень далеко, ведь Жаккар жил на рубеже XVIII—XIX вв. еков. Однако перфокарты позднее стали широко применяться и в других сферах, уйдя далеко за переделы знаменитого ткацкого станка.

В 1835 году Чарльз Бэббидж описал аналитическую машину, в основе которой могли бы лежать перфокарты. Ключевым принципом работы такого устройства было программирование. Таким образом, английский математик предсказал появление компьютера. Увы, но сам Бэббидж так и не смог построить придуманную им машину. Первый в мире аналоговый компьютер появился на свет в 1927 году. Создал его профессор Массачусетского университета Вэнивар Буш.

История создания и развития средств вычислительной техники

В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время фактически выпускались ЭВМ различных типов; для отдельной же машины вопрос о ее принадлежности к тому или иному поколению решается достаточно просто.

Еще во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т. д. Рост объемов этих расчетов приводил даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владешие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов. Так, в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак. Абак называют также римскими счетами. Эти счеты представляли собой костяную, каменную или бронзовую доску с углублениями – полосами. В углублениях находились костяшки, и счет осуществлялся передвижением костяшек.

В странах Древнего Востока существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пятьи по две костяшки. Счет осуществлялся единицами и пятерками. В России для арифметических вычеслений применялись русские счеты, появившиеся в 16 веке, но кое – где счеты можно встретить и сегодня.

Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка, её автором был английский математик Эдмонд Гантер. Логарифмической линейке суждена была долгая жизнь: от 17 века до нашего времени.

Однако ни абак, ни счеты, ни логарифмическая линейка не означают механизации процесса вычислений. В 17 веке выдающимся французким ученым Блезом Паскалем было изобретено принципиально новое счетное устройство – арифметическая машина. В основу её работы Б. Паскаль положил извесную до него идею выполнения вычислений с помощью металических шестеренок. В 1645 г. им была построена первая суммирующая машина, а в 1675 г. Паскалю удается создать настоящую машину, выполняющую все четыре арифметических действия. Почти одновременно с Паскалем в 1660 – 1680 гг. Сконструировал счетную машину великий немецкий математик Готфирд Лейбниц.

Счетные машины Паскаля и Лейбница стали прообразом арифмометра. Первый арифмометр для четырех арифметических действий, нашедший арифметическое применение, удалось построить только через сто лет, 1790 г., немецкому часовому мастеру Гану. Впоследствии устройство арифмометра совершенствовалось многими механиками из Англии, Франции, Италии, России, Швейцарии. Арифмометры применялись для выполнения сложных вычислений при проектировании и строительстве кораблей. Мостов, зданий, при проведении финансовых операций. Но производительность работы на арифмометрах оставалась невысокой, настоятельным требованием времени была автоматизация вычислений.

В 1833 г. анлийский ученый Чарлз Бэбидж, занимавшийся составлением таблиц для навигации, разработал проект «аналитической машины». По его замыслу, эта машина должна была стать гигантским арифмометром с программным управлением. В машине Бэбиджа предусмотрены были также арифметические и запоминающие устройства. Его машина стала прообразом будущих компьютеров. Но в ней использовались далеко не совершенные узлы, например, для запоминания разрядов десятичного числа в ней применялись зубчатые колеса. Осуществить свой проект Бэбиджу не удалось из – за недостаточного развития техники, и «аналитическая машина» на время была забыта.

Лишь спустя 100 лет машина Бэбиджа привлекла внимкние инженеров. В конце 30 – х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. К. Уцзе создал машину Z3, полностью управляемую с помощью программы.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы IBM построил мощную по тем временам машину «Марк – 1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле.

Поколения ЭВМ

Историю развития ЭВМ удобно описывать, пользуясь представлением о поколениях вычислительных машин. Каждое поколене ЭВМ характеризуется констуктивными особенностями и возможнотями. Приступим к описанию каждого из поколений, однако нужно помнить, что деление ЭВМ на поколения является условным, поскольку в одно и то же время выпускались машины разного уровня.

Первое поколение

Резкий скачек в развитии вычислительной техники произошел в 40 – х годах, после Второй мировой войны, и связан он был с появлением качественно новых электронных устройств – электронно – вакуумных ламп, работали значительно быстрее, чем схемы на электромеханическом реле, а релейные машины быстро вытеснены болеепроизводительными и надежными электронными вычислительными машинами (ЭВМ). Применение ЭВМ значительно расширило круг решаемых задач. Стали доступны задачи, которые раньше просто не ставились: расчеты инженерных сооружений, вычисления двежения планет, баллистические расчеты и т.д.

Первая ЭВМ создавалась в 1943 – 1946 гг. в США и называлась она ЭНИАК. Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле, причем ежемесячно выходило из строя около 2 тысяч ламп. ЦУ машины ЭНИАК, а также у других первых ЭВМ, был серьезный недостаток – исполняемая программа хранилась не в памяти машины, а набаралась сложным образом с помощью внешних перемычек.

В 1945 г. извесный математик и физик – теоретик фон Нейман сформулировал общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина должна была управляться программой с последовательным выполнением команд, а сама программа – храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.

В1951 году в СССР была создана МЭСМ, эти работы проводились в Киеве в Институте электродинамики под руководством крупнейшего конструктора вычислительной техники С. А. Лебедева.

ЭВМ постоянно совершенствовались, благодаря чему к середине 50 – х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Однако при этом электронная лампа оставалась самым надежным элементом ЭВМ. Использование ламп стало тормозить дальнейший прогресс вычислительной техники.

Впоследствии на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято называть ЭВМ первого поколения

Действительно, ЭВМ первого поколения размещались в больших машинных залах, потребляли много электроэнергии и требовали охлаждения с помощью мощных вентилятогров. Программы для этих ЭВМ нужно было составлять в машинных кодах, и этим могли заниматься только специалисты, знающие в деталях устройство ЭВМ.

Второе поколение

Разработчики ЭВМ всегда следовали за прогрессом в электронной технике. Когда в середине 50 – х годов на смену электронным лампам пришли полупроводниковые приборы, начался перевод ЭВМ на полупроводники.

Полуповодниковые приборы (транзисторы, диоды) были, во – первых, значительно компактнее своих ламповых предшественников. Во – вторых они обладали значительно большим сроком службы. В – третьих, потребление энергии у ЭВМ на полупроводниках было существенно ниже. С внедрением цифровых элементов на полупроводниковых приборах началось создание ЭВМ второго поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири». Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. в Институте кибернетики Академии Наук УССР. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий «Урал», «М – 20» и «Минск». Но рекордной среди отечественных машин этого поколния и одной из лучших в мире была БЭСМ – 6 («большая электронно – счетная машина», 6 – я модель), которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ – 6 была на два – три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежем наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

Третье поколение

Очередная смена поколений ЭВМ произошла в конце 60 – х годов при замене полупроводниковых приборов в устройствах ЭВМ на интегральлые схемы. Интегральная схема (микросхема) – это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам – электронщикам.

В третьем поколении появились крупные серии ЭВМ, различающиеся своей производительностью и назначением. Это семейство больших и средних машин IBM360/370, разработанных в США. В Советском Союзе и в странах СЭВ были созданы аналогические серии машин: ЕС ЭВМ (Единая Система ЭВМ, машины большие и средние), СМ ЭВМ (Система Малых ЭВМ) и «Электроника» (система микро – ЭВМ).

Рекомендуем почитать

Наверх